Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 53

1.

Bioactive hydrogels made from step-growth derived PEG-peptide macromers.

Miller JS, Shen CJ, Legant WR, Baranski JD, Blakely BL, Chen CS.

Biomaterials. 2010 May;31(13):3736-43. doi: 10.1016/j.biomaterials.2010.01.058. Epub 2010 Feb 6.

2.

Effect of cross-linking reagents for hyaluronic acid hydrogel dermal fillers on tissue augmentation and regeneration.

Yeom J, Bhang SH, Kim BS, Seo MS, Hwang EJ, Cho IH, Park JK, Hahn SK.

Bioconjug Chem. 2010 Feb 17;21(2):240-7. doi: 10.1021/bc9002647.

PMID:
20078098
3.

Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility.

Fairbanks BD, Schwartz MP, Bowman CN, Anseth KS.

Biomaterials. 2009 Dec;30(35):6702-7. doi: 10.1016/j.biomaterials.2009.08.055. Epub 2009 Sep 23.

4.

The use of injectable, thermosensitive poly(organophosphazene)-RGD conjugates for the enhancement of mesenchymal stem cell osteogenic differentiation.

Chun C, Lim HJ, Hong KY, Park KH, Song SC.

Biomaterials. 2009 Oct;30(31):6295-308. doi: 10.1016/j.biomaterials.2009.08.011. Epub 2009 Aug 27.

PMID:
19712969
5.

Characterization of electroconductive blends of poly(HEMA-co-PEGMA-co-HMMA-co-SPMA) and poly(Py-co-PyBA).

Justin G, Guiseppi-Elie A.

Biomacromolecules. 2009 Sep 14;10(9):2539-49. doi: 10.1021/bm900486d.

PMID:
19705837
6.

Functional PEG-peptide hydrogels to modulate local inflammation induced by the pro-inflammatory cytokine TNFalpha.

Lin CC, Metters AT, Anseth KS.

Biomaterials. 2009 Oct;30(28):4907-14. doi: 10.1016/j.biomaterials.2009.05.083. Epub 2009 Jun 27.

7.

Injectable poly(amidoamine)-poly(ethylene glycol)-poly(amidoamine) triblock copolymer hydrogel with dual sensitivities: pH and temperature.

Nguyen MK, Park DK, Lee DS.

Biomacromolecules. 2009 Apr 13;10(4):728-31. doi: 10.1021/bm900183j.

PMID:
19296656
8.

Farnesol-modified biodegradable polyurethanes for cartilage tissue engineering.

Eglin D, Grad S, Gogolewski S, Alini M.

J Biomed Mater Res A. 2010 Jan;92(1):393-408. doi: 10.1002/jbm.a.32385.

PMID:
19191318
9.

Injectable in situ-forming pH/thermo-sensitive hydrogel for bone tissue engineering.

Kim HK, Shim WS, Kim SE, Lee KH, Kang E, Kim JH, Kim K, Kwon IC, Lee DS.

Tissue Eng Part A. 2009 Apr;15(4):923-33. doi: 10.1089/ten.tea.2007.0407.

PMID:
19061427
10.

Biodegradable and biocompatible thermosensitive polymer based injectable implant for controlled release of protein.

Tang Y, Singh J.

Int J Pharm. 2009 Jan 5;365(1-2):34-43. doi: 10.1016/j.ijpharm.2008.08.018. Epub 2008 Aug 22.

PMID:
18786623
11.

Loading dependent swelling and release properties of novel biodegradable, elastic and environmental stimuli-sensitive polyurethanes.

Zhang C, Zhao K, Hu T, Cui X, Brown N, Boland T.

J Control Release. 2008 Oct 21;131(2):128-36. doi: 10.1016/j.jconrel.2008.07.026. Epub 2008 Jul 24.

PMID:
18703098
12.

Photopolymerized injectable RGD-modified fumarated poly(ethylene glycol) diglycidyl ether hydrogels for cell growth.

Akdemir ZS, Akçakaya H, Kahraman MV, Ceyhan T, Kayaman-Apohan N, Güngör A.

Macromol Biosci. 2008 Sep 9;8(9):852-62. doi: 10.1002/mabi.200700319.

PMID:
18504803
13.

Synthesis and characterization of L-tyrosine based polyurethanes for biomaterial applications.

Sarkar D, Yang JC, Gupta AS, Lopina ST.

J Biomed Mater Res A. 2009 Jul;90(1):263-71. doi: 10.1002/jbm.a.32095.

PMID:
18496869
14.

Synthesis and characterization of injectable, thermally and chemically gelable, amphiphilic poly(N-isopropylacrylamide)-based macromers.

Hacker MC, Klouda L, Ma BB, Kretlow JD, Mikos AG.

Biomacromolecules. 2008 Jun;9(6):1558-70. doi: 10.1021/bm8000414. Epub 2008 May 16.

PMID:
18481893
15.

A novel injectable local hydrophobic drug delivery system: Biodegradable nanoparticles in thermo-sensitive hydrogel.

Gou M, Li X, Dai M, Gong C, Wang X, Xie Y, Deng H, Chen L, Zhao X, Qian Z, Wei Y.

Int J Pharm. 2008 Jul 9;359(1-2):228-33. doi: 10.1016/j.ijpharm.2008.03.023. Epub 2008 Mar 25.

PMID:
18448286
16.

Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury.

Tysseling-Mattiace VM, Sahni V, Niece KL, Birch D, Czeisler C, Fehlings MG, Stupp SI, Kessler JA.

J Neurosci. 2008 Apr 2;28(14):3814-23. doi: 10.1523/JNEUROSCI.0143-08.2008.

17.

Functionalized injectable hydrogels for controlled insulin delivery.

Huynh DP, Nguyen MK, Pi BS, Kim MS, Chae SY, Lee KC, Kim BS, Kim SW, Lee DS.

Biomaterials. 2008 Jun;29(16):2527-34. doi: 10.1016/j.biomaterials.2008.02.016. Epub 2008 Mar 10.

PMID:
18329707
18.

Hydrolytically degradable hyaluronic acid hydrogels with controlled temporal structures.

Sahoo S, Chung C, Khetan S, Burdick JA.

Biomacromolecules. 2008 Apr;9(4):1088-92. doi: 10.1021/bm800051m. Epub 2008 Mar 7.

19.

In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery.

He C, Kim SW, Lee DS.

J Control Release. 2008 May 8;127(3):189-207. doi: 10.1016/j.jconrel.2008.01.005. Epub 2008 Jan 26. Review.

PMID:
18321604
20.

In situ gelling hydrogels incorporating microparticles as drug delivery carriers for regenerative medicine.

Hou Q, Chau DY, Pratoomsoot C, Tighe PJ, Dua HS, Shakesheff KM, Rose FR.

J Pharm Sci. 2008 Sep;97(9):3972-80. doi: 10.1002/jps.21310.

PMID:
18240277
Items per page

Supplemental Content

Write to the Help Desk