Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 109

1.

Differential involvement of the extracellular 6-O-endosulfatases Sulf1 and Sulf2 in brain development and neuronal and behavioural plasticity.

Kalus I, Salmen B, Viebahn C, von Figura K, Schmitz D, D'Hooge R, Dierks T.

J Cell Mol Med. 2009 Nov-Dec;13(11-12):4505-21. doi: 10.1111/j.1582-4934.2008.00558.x.

2.

Quantitative and qualitative alterations of heparan sulfate in fibrogenic liver diseases and hepatocellular cancer.

Tátrai P, Egedi K, Somorácz A, van Kuppevelt TH, Ten Dam G, Lyon M, Deakin JA, Kiss A, Schaff Z, Kovalszky I.

J Histochem Cytochem. 2010 May;58(5):429-41. doi: 10.1369/jhc.2010.955161. Epub 2010 Feb 1.

3.

Fibroblast growth factor signalling: from development to cancer.

Turner N, Grose R.

Nat Rev Cancer. 2010 Feb;10(2):116-29. doi: 10.1038/nrc2780. Review.

PMID:
20094046
4.

Lipid rafts as a membrane-organizing principle.

Lingwood D, Simons K.

Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. Review.

PMID:
20044567
5.

Proteolytic cleavage of the rat heparan sulfate 6-O-endosulfatase SulfFP2 by furin-type proprotein convertases.

Nagamine S, Keino-Masu K, Shiomi K, Masu M.

Biochem Biophys Res Commun. 2010 Jan 1;391(1):107-12. doi: 10.1016/j.bbrc.2009.11.011. Epub 2009 Nov 10.

PMID:
19900405
6.

Sulf-2, a heparan sulfate endosulfatase, promotes human lung carcinogenesis.

Lemjabbar-Alaoui H, van Zante A, Singer MS, Xue Q, Wang YQ, Tsay D, He B, Jablons DM, Rosen SD.

Oncogene. 2010 Feb 4;29(5):635-46. doi: 10.1038/onc.2009.365. Epub 2009 Oct 26.

7.

Direct detection of HSulf-1 and HSulf-2 activities on extracellular heparan sulfate and their inhibition by PI-88.

Hossain MM, Hosono-Fukao T, Tang R, Sugaya N, van Kuppevelt TH, Jenniskens GJ, Kimata K, Rosen SD, Uchimura K.

Glycobiology. 2010 Feb;20(2):175-86. doi: 10.1093/glycob/cwp159. Epub 2009 Oct 12.

8.

Gene expression analysis identifies over-expression of CXCL1, SPARC, SPP1, and SULF1 in gastric cancer.

Junnila S, Kokkola A, Mizuguchi T, Hirata K, Karjalainen-Lindsberg ML, Puolakkainen P, Monni O.

Genes Chromosomes Cancer. 2010 Jan;49(1):28-39. doi: 10.1002/gcc.20715.

PMID:
19780053
9.

Characterization of the human sulfatase Sulf1 and its high affinity heparin/heparan sulfate interaction domain.

Frese MA, Milz F, Dick M, Lamanna WC, Dierks T.

J Biol Chem. 2009 Oct 9;284(41):28033-44. doi: 10.1074/jbc.M109.035808. Epub 2009 Aug 7.

10.

Functional consequences of the subdomain organization of the sulfs.

Tang R, Rosen SD.

J Biol Chem. 2009 Aug 7;284(32):21505-14. doi: 10.1074/jbc.M109.028472. Epub 2009 Jun 11.

11.

High-resolution DNA copy number and gene expression analyses distinguish chromophobe renal cell carcinomas and renal oncocytomas.

Yusenko MV, Kuiper RP, Boethe T, Ljungberg B, van Kessel AG, Kovacs G.

BMC Cancer. 2009 May 18;9:152. doi: 10.1186/1471-2407-9-152.

12.

Wnt pathway aberrations including autocrine Wnt activation occur at high frequency in human non-small-cell lung carcinoma.

Akiri G, Cherian MM, Vijayakumar S, Liu G, Bafico A, Aaronson SA.

Oncogene. 2009 May 28;28(21):2163-72. doi: 10.1038/onc.2009.82. Epub 2009 Apr 20.

13.

The tumor suppressor function of human sulfatase 1 (SULF1) in carcinogenesis.

Lai JP, Sandhu DS, Shire AM, Roberts LR.

J Gastrointest Cancer. 2008;39(1-4):149-58. doi: 10.1007/s12029-009-9058-y. Epub 2009 Apr 17. Review.

14.

Principles of cancer therapy: oncogene and non-oncogene addiction.

Luo J, Solimini NL, Elledge SJ.

Cell. 2009 Mar 6;136(5):823-37. doi: 10.1016/j.cell.2009.02.024. Erratum in: Cell. 2009 Aug 21;138(4):807.

15.

Evidence that molecular changes in cells occur before morphological alterations during the progression of breast ductal carcinoma.

Castro NP, Osório CA, Torres C, Bastos EP, Mourão-Neto M, Soares FA, Brentani HP, Carraro DM.

Breast Cancer Res. 2008;10(5):R87. doi: 10.1186/bcr2157. Epub 2008 Oct 17.

16.

PI-88: a novel inhibitor of angiogenesis.

Kudchadkar R, Gonzalez R, Lewis KD.

Expert Opin Investig Drugs. 2008 Nov;17(11):1769-76. doi: 10.1517/13543784.17.11.1769 .

PMID:
18922112
17.

Fibroblast growth factor (FGF) and FGF receptor-mediated autocrine signaling in non-small-cell lung cancer cells.

Marek L, Ware KE, Fritzsche A, Hercule P, Helton WR, Smith JE, McDermott LA, Coldren CD, Nemenoff RA, Merrick DT, Helfrich BA, Bunn PA Jr, Heasley LE.

Mol Pharmacol. 2009 Jan;75(1):196-207. doi: 10.1124/mol.108.049544. Epub 2008 Oct 10.

18.

Sulf loss influences N-, 2-O-, and 6-O-sulfation of multiple heparan sulfate proteoglycans and modulates fibroblast growth factor signaling.

Lamanna WC, Frese MA, Balleininger M, Dierks T.

J Biol Chem. 2008 Oct 10;283(41):27724-35. doi: 10.1074/jbc.M802130200. Epub 2008 Aug 6.

19.

Elucidating the function of non catalytic domains of collagenases and aggrecanases.

Nagase H, Fushimi K.

Connect Tissue Res. 2008;49(3):169-74. doi: 10.1080/03008200802151698. Review.

PMID:
18661336
20.

Transforming growth factor-beta1 induces heparan sulfate 6-O-endosulfatase 1 expression in vitro and in vivo.

Yue X, Li X, Nguyen HT, Chin DR, Sullivan DE, Lasky JA.

J Biol Chem. 2008 Jul 18;283(29):20397-407. doi: 10.1074/jbc.M802850200. Epub 2008 May 23.

Items per page

Supplemental Content

Write to the Help Desk