Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 55

1.

How robust are your data?

[No authors listed]

Nat Cell Biol. 2009 Jun;11(6):667. doi: 10.1038/ncb0609-667. No abstract available.

PMID:
19488054
2.

The yeast GATA factor Gat1 occupies a central position in nitrogen catabolite repression-sensitive gene activation.

Georis I, Feller A, Vierendeels F, Dubois E.

Mol Cell Biol. 2009 Jul;29(13):3803-15. doi: 10.1128/MCB.00399-09. Epub 2009 Apr 20.

3.

Nitrogen catabolite repression-sensitive transcription as a readout of Tor pathway regulation: the genetic background, reporter gene and GATA factor assayed determine the outcomes.

Georis I, Feller A, Tate JJ, Cooper TG, Dubois E.

Genetics. 2009 Mar;181(3):861-74. doi: 10.1534/genetics.108.099051. Epub 2008 Dec 22. Erratum in: Genetics. 2009 Jul;182(3):927.

4.

Formalin can alter the intracellular localization of some transcription factors in Saccharomyces cerevisiae.

Tate JJ, Cooper TG.

FEMS Yeast Res. 2008 Dec;8(8):1223-35. doi: 10.1111/j.1567-1364.2008.00441.x.

5.

Rapamycin-induced Gln3 dephosphorylation is insufficient for nuclear localization: Sit4 and PP2A phosphatases are regulated and function differently.

Tate JJ, Georis I, Feller A, Dubois E, Cooper TG.

J Biol Chem. 2009 Jan 23;284(4):2522-34. doi: 10.1074/jbc.M806162200. Epub 2008 Nov 17.

6.

Nuclear translocation of Gln3 in response to nutrient signals requires Golgi-to-endosome trafficking in Saccharomyces cerevisiae.

Puria R, Zurita-Martinez SA, Cardenas ME.

Proc Natl Acad Sci U S A. 2008 May 20;105(20):7194-9. doi: 10.1073/pnas.0801087105. Epub 2008 Apr 28.

7.

How Saccharomyces responds to nutrients.

Zaman S, Lippman SI, Zhao X, Broach JR.

Annu Rev Genet. 2008;42:27-81. doi: 10.1146/annurev.genet.41.110306.130206. Review.

PMID:
18303986
8.

Tor pathway control of the nitrogen-responsive DAL5 gene bifurcates at the level of Gln3 and Gat1 regulation in Saccharomyces cerevisiae.

Georis I, Tate JJ, Cooper TG, Dubois E.

J Biol Chem. 2008 Apr 4;283(14):8919-29. doi: 10.1074/jbc.M708811200. Epub 2008 Feb 1.

9.

The evolutionary dynamics of the Saccharomyces cerevisiae protein interaction network after duplication.

Presser A, Elowitz MB, Kellis M, Kishony R.

Proc Natl Acad Sci U S A. 2008 Jan 22;105(3):950-4. doi: 10.1073/pnas.0707293105. Epub 2008 Jan 16.

10.

Gene duplication and the adaptive evolution of a classic genetic switch.

Hittinger CT, Carroll SB.

Nature. 2007 Oct 11;449(7163):677-81.

PMID:
17928853
11.
13.
14.

Rapamycin activates Tap42-associated phosphatases by abrogating their association with Tor complex 1.

Yan G, Shen X, Jiang Y.

EMBO J. 2006 Aug 9;25(15):3546-55. Epub 2006 Jul 27.

15.

Regulation of the cell cycle by protein phosphatase 2A in Saccharomyces cerevisiae.

Jiang Y.

Microbiol Mol Biol Rev. 2006 Jun;70(2):440-9. Review.

17.

Coordinate regulation of multiple and distinct biosynthetic pathways by TOR and PKA kinases in S. cerevisiae.

Chen JC, Powers T.

Curr Genet. 2006 May;49(5):281-93. Epub 2006 Jan 6.

PMID:
16397762
18.

Retrograde response to mitochondrial dysfunction is separable from TOR1/2 regulation of retrograde gene expression.

Giannattasio S, Liu Z, Thornton J, Butow RA.

J Biol Chem. 2005 Dec 30;280(52):42528-35. Epub 2005 Oct 27.

19.

Methionine sulfoximine treatment and carbon starvation elicit Snf1-independent phosphorylation of the transcription activator Gln3 in Saccharomyces cerevisiae.

Tate JJ, Rai R, Cooper TG.

J Biol Chem. 2005 Jul 22;280(29):27195-204. Epub 2005 May 23. Erratum in: J Biol Chem. 2007 Apr 27;282(17):13139.

20.

Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae.

Kellis M, Birren BW, Lander ES.

Nature. 2004 Apr 8;428(6983):617-24. Epub 2004 Mar 7.

Items per page

Supplemental Content

Write to the Help Desk