Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 67

1.

PINK1-associated Parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death.

Gandhi S, Wood-Kaczmar A, Yao Z, Plun-Favreau H, Deas E, Klupsch K, Downward J, Latchman DS, Tabrizi SJ, Wood NW, Duchen MR, Abramov AY.

Mol Cell. 2009 Mar 13;33(5):627-38. doi: 10.1016/j.molcel.2009.02.013.

2.

Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission.

Dagda RK, Cherra SJ 3rd, Kulich SM, Tandon A, Park D, Chu CT.

J Biol Chem. 2009 May 15;284(20):13843-55. doi: 10.1074/jbc.M808515200. Epub 2009 Mar 10.

3.

Silencing of PINK1 expression affects mitochondrial DNA and oxidative phosphorylation in dopaminergic cells.

Gegg ME, Cooper JM, Schapira AH, Taanman JW.

PLoS One. 2009;4(3):e4756. doi: 10.1371/journal.pone.0004756. Epub 2009 Mar 9.

4.

PINK1 defect causes mitochondrial dysfunction, proteasomal deficit and alpha-synuclein aggregation in cell culture models of Parkinson's disease.

Liu W, Vives-Bauza C, Acín-Peréz- R, Yamamoto A, Tan Y, Li Y, Magrané J, Stavarache MA, Shaffer S, Chang S, Kaplitt MG, Huang XY, Beal MF, Manfredi G, Li C.

PLoS One. 2009;4(2):e4597. doi: 10.1371/journal.pone.0004597. Epub 2009 Feb 26.

5.

Mutant Pink1 induces mitochondrial dysfunction in a neuronal cell model of Parkinson's disease by disturbing calcium flux.

Marongiu R, Spencer B, Crews L, Adame A, Patrick C, Trejo M, Dallapiccola B, Valente EM, Masliah E.

J Neurochem. 2009 Mar;108(6):1561-74. doi: 10.1111/j.1471-4159.2009.05932.x. Epub 2009 Jan 24.

6.

Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts.

Mortiboys H, Thomas KJ, Koopman WJ, Klaffke S, Abou-Sleiman P, Olpin S, Wood NW, Willems PH, Smeitink JA, Cookson MR, Bandmann O.

Ann Neurol. 2008 Nov;64(5):555-65. doi: 10.1002/ana.21492.

7.

The PINK1-Parkin pathway is involved in the regulation of mitochondrial remodeling process.

Park J, Lee G, Chung J.

Biochem Biophys Res Commun. 2009 Jan 16;378(3):518-23. doi: 10.1016/j.bbrc.2008.11.086. Epub 2008 Dec 3.

PMID:
19056353
8.

Mitofusin 2 tethers endoplasmic reticulum to mitochondria.

de Brito OM, Scorrano L.

Nature. 2008 Dec 4;456(7222):605-10. doi: 10.1038/nature07534. Erratum in: Nature. 2014 Sep 11;513(7517):266.

PMID:
19052620
9.

Parkin mitochondria in the autophagosome.

McBride HM.

J Cell Biol. 2008 Dec 1;183(5):757-9. doi: 10.1083/jcb.200810184. Epub 2008 Nov 24.

10.

Parkin is recruited selectively to impaired mitochondria and promotes their autophagy.

Narendra D, Tanaka A, Suen DF, Youle RJ.

J Cell Biol. 2008 Dec 1;183(5):795-803. doi: 10.1083/jcb.200809125. Epub 2008 Nov 24.

11.

Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria.

Cereghetti GM, Stangherlin A, Martins de Brito O, Chang CR, Blackstone C, Bernardi P, Scorrano L.

Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):15803-8. doi: 10.1073/pnas.0808249105. Epub 2008 Oct 6.

12.

The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila.

Deng H, Dodson MW, Huang H, Guo M.

Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14503-8. doi: 10.1073/pnas.0803998105. Epub 2008 Sep 17.

13.

CaM kinase I alpha-induced phosphorylation of Drp1 regulates mitochondrial morphology.

Han XJ, Lu YF, Li SA, Kaitsuka T, Sato Y, Tomizawa K, Nairn AC, Takei K, Matsui H, Matsushita M.

J Cell Biol. 2008 Aug 11;182(3):573-85. doi: 10.1083/jcb.200802164.

14.

Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress.

Gautier CA, Kitada T, Shen J.

Proc Natl Acad Sci U S A. 2008 Aug 12;105(32):11364-9. doi: 10.1073/pnas.0802076105. Epub 2008 Aug 7.

15.

The kinase domain of mitochondrial PINK1 faces the cytoplasm.

Zhou C, Huang Y, Shao Y, May J, Prou D, Perier C, Dauer W, Schon EA, Przedborski S.

Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):12022-7. doi: 10.1073/pnas.0802814105. Epub 2008 Aug 7.

16.

PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons.

Wood-Kaczmar A, Gandhi S, Yao Z, Abramov AY, Miljan EA, Keen G, Stanyer L, Hargreaves I, Klupsch K, Deas E, Downward J, Mansfield L, Jat P, Taylor J, Heales S, Duchen MR, Latchman D, Tabrizi SJ, Wood NW.

PLoS One. 2008 Jun 18;3(6):e2455. doi: 10.1371/journal.pone.0002455. Erratum in: PLoS ONE. 2008;3(7). doi: 10.1371/annotation/17d5aaa1-c6d8-4aad-a9a4-56b2c1220c83. Abramov, Andrey S Y [corrected to Abramov, Andrey Y]. PLoS ONE. 2008;3(7). doi: 10.1371/annotation/ba489c2a-5cf2-481c-aff7-d2c8c4ecdcfa.

17.

Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view.

Twig G, Hyde B, Shirihai OS.

Biochim Biophys Acta. 2008 Sep;1777(9):1092-7. doi: 10.1016/j.bbabio.2008.05.001. Epub 2008 May 14. Review.

18.

Mitochondrial oxidative phosphorylation and energetic status are reflected by morphology of mitochondrial network in INS-1E and HEP-G2 cells viewed by 4Pi microscopy.

Plecitá-Hlavatá L, Lessard M, Santorová J, Bewersdorf J, Jezek P.

Biochim Biophys Acta. 2008 Jul-Aug;1777(7-8):834-46. doi: 10.1016/j.bbabio.2008.04.002. Epub 2008 Apr 10.

19.

Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery.

Yang Y, Ouyang Y, Yang L, Beal MF, McQuibban A, Vogel H, Lu B.

Proc Natl Acad Sci U S A. 2008 May 13;105(19):7070-5. doi: 10.1073/pnas.0711845105. Epub 2008 Apr 28. Erratum in: Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17585.

20.

Proteomic identification of p53-dependent protein phosphorylation.

Rahman-Roblick R, Hellman U, Becker S, Bader FG, Auer G, Wiman KG, Roblick UJ.

Oncogene. 2008 Aug 14;27(35):4854-9. doi: 10.1038/onc.2008.124. Epub 2008 Apr 28.

PMID:
18438429
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk