Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 31

1.

Hubble Space Telescope prescription retrieval.

Redding D, Dumont P, Yu J.

Appl Opt. 1993 Apr 1;32(10):1728-36. doi: 10.1364/AO.32.001728.

PMID:
20820306
2.

Population study of the variation in monochromatic aberrations of the normal human eye over the central visual field.

Sheehan MT, Goncharov AV, O'Dwyer VM, Toal V, Dainty C.

Opt Express. 2007 Jun 11;15(12):7367-80.

PMID:
19547060
3.

Instrument for measuring the misalignments of ocular surfaces.

Tabernero J, Benito A, Nourrit V, Artal P.

Opt Express. 2006 Oct 30;14(22):10945-56.

PMID:
19529508
4.

Adaptive optics scanning laser ophthalmoscopy.

Roorda A, Romero-Borja F, Donnelly Iii W, Queener H, Hebert T, Campbell M.

Opt Express. 2002 May 6;10(9):405-12.

PMID:
19436374
5.

Improvement in retinal image quality with dynamic correction of the eye's aberrations.

Hofer H, Chen L, Yoon GY, Singer B, Yamauchi Y, Williams DR.

Opt Express. 2001 May 21;8(11):631-43.

PMID:
19421252
6.

Reconstruction of the optical system of the human eye with reverse ray-tracing.

Goncharov AV, Nowakowski M, Sheehan MT, Dainty C.

Opt Express. 2008 Feb 4;16(3):1692-703.

PMID:
18542248
7.

Contributions of the cornea and the lens to the aberrations of the human eye.

Artal P, Guirao A.

Opt Lett. 1998 Nov 1;23(21):1713-5.

PMID:
18091893
8.

Adaptive model of the gradient index of the human lens. II. Optics of the accommodating aging lens.

Navarro R, Palos F, González LM.

J Opt Soc Am A Opt Image Sci Vis. 2007 Sep;24(9):2911-20.

PMID:
17767263
9.

Adaptive model of the gradient index of the human lens. I. Formulation and model of aging ex vivo lenses.

Navarro R, Palos F, González L.

J Opt Soc Am A Opt Image Sci Vis. 2007 Aug;24(8):2175-85.

PMID:
17621321
10.

Wide-field schematic eye models with gradient-index lens.

Goncharov AV, Dainty C.

J Opt Soc Am A Opt Image Sci Vis. 2007 Aug;24(8):2157-74.

PMID:
17621320
11.

Technical note: measurement of retinal contour and supine axial length using the Zeiss IOLMaster.

Mallen EA, Kashyap P.

Ophthalmic Physiol Opt. 2007 Jul;27(4):404-11.

PMID:
17584293
12.

Maximum-likelihood methods in wavefront sensing: stochastic models and likelihood functions.

Barrett HH, Dainty C, Lara D.

J Opt Soc Am A Opt Image Sci Vis. 2007 Feb;24(2):391-414.

13.

Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging.

Rosales P, Dubbelman M, Marcos S, van der Heijde R.

J Vis. 2006 Sep 19;6(10):1057-67.

PMID:
17132077
14.
15.

Optics of the average normal cornea from general and canonical representations of its surface topography.

Navarro R, González L, Hernández JL.

J Opt Soc Am A Opt Image Sci Vis. 2006 Feb;23(2):219-32.

PMID:
16477826
16.

Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI).

Jones CE, Atchison DA, Meder R, Pope JM.

Vision Res. 2005 Aug;45(18):2352-66. Epub 2005 Apr 22.

17.

Chromatic dispersions of the ocular media of human eyes.

Atchison DA, Smith G.

J Opt Soc Am A Opt Image Sci Vis. 2005 Jan;22(1):29-37.

PMID:
15669612
18.

Validation of a combined corneal topographer and aberrometer based on Shack-Hartmann wave-front sensing.

Zhou F, Hong X, Miller DT, Thibos LN, Bradley A.

J Opt Soc Am A Opt Image Sci Vis. 2004 May;21(5):683-96.

PMID:
15139420
19.

Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study.

Koretz JE, Strenk SA, Strenk LM, Semmlow JL.

J Opt Soc Am A Opt Image Sci Vis. 2004 Mar;21(3):346-54.

PMID:
15005398
20.

Wide-field compensation of monochromatic eye aberrations: expected performance and design trade-offs.

Bará S, Navarro R.

J Opt Soc Am A Opt Image Sci Vis. 2003 Jan;20(1):1-10.

PMID:
12542312
Items per page

Supplemental Content

Write to the Help Desk