Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 57

1.

Evidence for complex interactions of stress-associated regulons in an mprAB deletion mutant of Mycobacterium tuberculosis.

Pang X, Vu P, Byrd TF, Ghanny S, Soteropoulos P, Mukamolova GV, Wu S, Samten B, Howard ST.

Microbiology. 2007 Apr;153(Pt 4):1229-42.

PMID:
17379732
2.

The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis.

Walters SB, Dubnau E, Kolesnikova I, Laval F, Daffe M, Smith I.

Mol Microbiol. 2006 Apr;60(2):312-30.

4.
5.

The unusual chaperonins of Mycobacterium tuberculosis.

Qamra R, Mande SC, Coates AR, Henderson B.

Tuberculosis (Edinb). 2005 Sep-Nov;85(5-6):385-94. Epub 2005 Oct 25. Review.

PMID:
16253564
6.

Sensing external stress: watchdogs of the Escherichia coli cell envelope.

Ruiz N, Silhavy TJ.

Curr Opin Microbiol. 2005 Apr;8(2):122-6. Review.

PMID:
15802241
7.

Infection biology of a novel alpha-crystallin of Mycobacterium tuberculosis: Acr2.

Wilkinson KA, Stewart GR, Newton SM, Vordermeier HM, Wain JR, Murphy HN, Horner K, Young DB, Wilkinson RJ.

J Immunol. 2005 Apr 1;174(7):4237-43.

8.

The stress-responsive chaperone alpha-crystallin 2 is required for pathogenesis of Mycobacterium tuberculosis.

Stewart GR, Newton SM, Wilkinson KA, Humphreys IR, Murphy HN, Robertson BD, Wilkinson RJ, Young DB.

Mol Microbiol. 2005 Feb;55(4):1127-37.

10.

Antibiotic-inducible promoter regulated by the cell envelope stress-sensing two-component system LiaRS of Bacillus subtilis.

Mascher T, Zimmer SL, Smith TA, Helmann JD.

Antimicrob Agents Chemother. 2004 Aug;48(8):2888-96.

11.

Regulation of the Escherichia coli sigma-dependent envelope stress response.

Alba BM, Gross CA.

Mol Microbiol. 2004 May;52(3):613-9. Review.

12.

The temporal expression profile of Mycobacterium tuberculosis infection in mice.

Talaat AM, Lyons R, Howard ST, Johnston SA.

Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4602-7. Epub 2004 Mar 18.

13.
14.

Two sensor kinases contribute to the hypoxic response of Mycobacterium tuberculosis.

Roberts DM, Liao RP, Wisedchaisri G, Hol WG, Sherman DR.

J Biol Chem. 2004 May 28;279(22):23082-7. Epub 2004 Mar 19.

15.

The principal sigma factor sigA mediates enhanced growth of Mycobacterium tuberculosis in vivo.

Wu S, Howard ST, Lakey DL, Kipnis A, Samten B, Safi H, Gruppo V, Wizel B, Shams H, Basaraba RJ, Orme IM, Barnes PF.

Mol Microbiol. 2004 Mar;51(6):1551-62.

16.

Functional analysis of the Mycobacterium tuberculosis MprAB two-component signal transduction system.

Zahrt TC, Wozniak C, Jones D, Trevett A.

Infect Immun. 2003 Dec;71(12):6962-70.

17.

Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program.

Voskuil MI, Schnappinger D, Visconti KC, Harrell MI, Dolganov GM, Sherman DR, Schoolnik GK.

J Exp Med. 2003 Sep 1;198(5):705-13.

18.

Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages: Insights into the Phagosomal Environment.

Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B, Butcher PD, Nathan C, Schoolnik GK.

J Exp Med. 2003 Sep 1;198(5):693-704.

19.

A family of acr-coregulated Mycobacterium tuberculosis genes shares a common DNA motif and requires Rv3133c (dosR or devR) for expression.

Florczyk MA, McCue LA, Purkayastha A, Currenti E, Wolin MJ, McDonough KA.

Infect Immun. 2003 Sep;71(9):5332-43.

20.

Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis.

Park HD, Guinn KM, Harrell MI, Liao R, Voskuil MI, Tompa M, Schoolnik GK, Sherman DR.

Mol Microbiol. 2003 May;48(3):833-43.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk