Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 56

References for PMC Articles for PubMed (Select 17536013)

1.

Inhibition of VEGF signaling pathways in multiple myeloma and other malignancies.

Podar K, Anderson KC.

Cell Cycle. 2007 Mar 1;6(5):538-42. Epub 2007 Mar 31. Review.

PMID:
17351339
2.

Heparanase enhances syndecan-1 shedding: a novel mechanism for stimulation of tumor growth and metastasis.

Yang Y, Macleod V, Miao HQ, Theus A, Zhan F, Shaughnessy JD Jr, Sawyer J, Li JP, Zcharia E, Vlodavsky I, Sanderson RD.

J Biol Chem. 2007 May 4;282(18):13326-33. Epub 2007 Mar 8.

3.

Heparanase influences expression and shedding of syndecan-1, and its expression by the bone marrow environment is a bad prognostic factor in multiple myeloma.

Mahtouk K, Hose D, Raynaud P, Hundemer M, Jourdan M, Jourdan E, Pantesco V, Baudard M, De Vos J, Larroque M, Moehler T, Rossi JF, Rème T, Goldschmidt H, Klein B.

Blood. 2007 Jun 1;109(11):4914-23. Epub 2007 Mar 5.

4.

The small-molecule VEGF receptor inhibitor pazopanib (GW786034B) targets both tumor and endothelial cells in multiple myeloma.

Podar K, Tonon G, Sattler M, Tai YT, Legouill S, Yasui H, Ishitsuka K, Kumar S, Kumar R, Pandite LN, Hideshima T, Chauhan D, Anderson KC.

Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19478-83. Epub 2006 Dec 12.

5.

Synopsis of a roundtable on validating novel therapeutics for multiple myeloma.

Dalton W, Anderson KC.

Clin Cancer Res. 2006 Nov 15;12(22):6603-10. Review.

6.

A phase I biological and pharmacologic study of the heparanase inhibitor PI-88 in patients with advanced solid tumors.

Basche M, Gustafson DL, Holden SN, O'Bryant CL, Gore L, Witta S, Schultz MK, Morrow M, Levin A, Creese BR, Kangas M, Roberts K, Nguyen T, Davis K, Addison RS, Moore JC, Eckhardt SG.

Clin Cancer Res. 2006 Sep 15;12(18):5471-80.

7.

Development of heparanase inhibitors for anti-cancer therapy.

Miao HQ, Liu H, Navarro E, Kussie P, Zhu Z.

Curr Med Chem. 2006;13(18):2101-11. Review.

PMID:
16918340
8.

Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis.

Ilan N, Elkin M, Vlodavsky I.

Int J Biochem Cell Biol. 2006;38(12):2018-39. Epub 2006 Jul 6. Review.

PMID:
16901744
9.

Heparan sulphate proteoglycans are essential for the myeloma cell growth activity of EGF-family ligands in multiple myeloma.

Mahtouk K, Cremer FW, Rème T, Jourdan M, Baudard M, Moreaux J, Requirand G, Fiol G, De Vos J, Moos M, Quittet P, Goldschmidt H, Rossi JF, Hose D, Klein B.

Oncogene. 2006 Nov 16;25(54):7180-91. Epub 2006 May 29.

10.

Syndecan-1 regulates alphavbeta5 integrin activity in B82L fibroblasts.

McQuade KJ, Beauvais DM, Burbach BJ, Rapraeger AC.

J Cell Sci. 2006 Jun 15;119(Pt 12):2445-56. Epub 2006 May 23.

11.

The role of heparan sulphate proteoglycans in angiogenesis.

Stringer SE.

Biochem Soc Trans. 2006 Jun;34(Pt 3):451-3. Review.

PMID:
16709184
12.

Heparan sulfate in trans potentiates VEGFR-mediated angiogenesis.

Jakobsson L, Kreuger J, Holmborn K, Lundin L, Eriksson I, Kjellén L, Claesson-Welsh L.

Dev Cell. 2006 May;10(5):625-34.

13.

HSulf-1 and HSulf-2 are potent inhibitors of myeloma tumor growth in vivo.

Dai Y, Yang Y, MacLeod V, Yue X, Rapraeger AC, Shriver Z, Venkataraman G, Sasisekharan R, Sanderson RD.

J Biol Chem. 2005 Dec 2;280(48):40066-73. Epub 2005 Sep 27.

14.

Decreasing the metastatic potential in cancers--targeting the heparan sulfate proteoglycans.

Fjeldstad K, Kolset SO.

Curr Drug Targets. 2005 Sep;6(6):665-82. Review.

PMID:
16178800
15.

Enzymatic remodeling of heparan sulfate proteoglycans within the tumor microenvironment: growth regulation and the prospect of new cancer therapies.

Sanderson RD, Yang Y, Kelly T, MacLeod V, Dai Y, Theus A.

J Cell Biochem. 2005 Dec 1;96(5):897-905. Review.

PMID:
16149080
16.

Non-anti-coagulant heparins: a promising approach for prevention of tumor metastasis (review).

Kragh M, Loechel F.

Int J Oncol. 2005 Oct;27(4):1159-67. Review.

PMID:
16142335
17.

Netoglitazone is a PPAR-gamma ligand with selective effects on bone and fat.

Lazarenko OP, Rzonca SO, Suva LJ, Lecka-Czernik B.

Bone. 2006 Jan;38(1):74-84. Epub 2005 Aug 30.

18.

A functional heparan sulfate mimetic implicates both heparanase and heparan sulfate in tumor angiogenesis and invasion in a mouse model of multistage cancer.

Joyce JA, Freeman C, Meyer-Morse N, Parish CR, Hanahan D.

Oncogene. 2005 Jun 9;24(25):4037-51. Erratum in: Oncogene. 2005 Jun 9;24(25):4163.

PMID:
15806157
19.
20.

Modulation of the heparanase-inhibiting activity of heparin through selective desulfation, graded N-acetylation, and glycol splitting.

Naggi A, Casu B, Perez M, Torri G, Cassinelli G, Penco S, Pisano C, Giannini G, Ishai-Michaeli R, Vlodavsky I.

J Biol Chem. 2005 Apr 1;280(13):12103-13. Epub 2005 Jan 12.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk