Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 34

1.

The hemicochlea preparation of the guinea pig and other mammalian cochleae.

Teudt IU, Richter CP.

J Neurosci Methods. 2007 May 15;162(1-2):187-97. Epub 2007 Jan 21.

PMID:
17327136
2.

Measurement of the mechanical properties of isolated tectorial membrane using atomic force microscopy.

Gueta R, Barlam D, Shneck RZ, Rousso I.

Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14790-5. Epub 2006 Sep 25.

3.

Poroelastic bulk properties of the tectorial membrane measured with osmotic stress.

Masaki K, Weiss TF, Freeman DM.

Biophys J. 2006 Sep 15;91(6):2356-70. Epub 2006 Jun 30.

4.

Evidence and implications of inhomogeneity in tectorial membrane elasticity.

Shoelson B, Dimitriadis EK, Cai H, Kachar B, Chadwick RS.

Biophys J. 2004 Oct;87(4):2768-77.

5.

Impedance analysis of the organ of corti with magnetically actuated probes.

Scherer MP, Gummer AW.

Biophys J. 2004 Aug;87(2):1378-91.

6.

Stiffness of the gerbil basilar membrane: radial and longitudinal variations.

Emadi G, Richter CP, Dallos P.

J Neurophysiol. 2004 Jan;91(1):474-88. Epub 2003 Oct 1.

7.

Static material properties of the tectorial membrane: a summary.

Freeman DM, Masaki K, McAllister AR, Wei JL, Weiss TF.

Hear Res. 2003 Jun;180(1-2):11-27. Review.

PMID:
12782349
8.

Dynamic material properties of the tectorial membrane: a summary.

Freeman DM, Abnet CC, Hemmert W, Tsai BS, Weiss TF.

Hear Res. 2003 Jun;180(1-2):1-10. Review.

PMID:
12782348
9.

Determination of elastic moduli of thin layers of soft material using the atomic force microscope.

Dimitriadis EK, Horkay F, Maresca J, Kachar B, Chadwick RS.

Biophys J. 2002 May;82(5):2798-810.

10.

Development of the gerbil inner ear observed in the hemicochlea.

Richter CP, Edge R, He DZ, Dallos P.

J Assoc Res Otolaryngol. 2000 Nov;1(3):195-210.

11.

A targeted deletion in alpha-tectorin reveals that the tectorial membrane is required for the gain and timing of cochlear feedback.

Legan PK, Lukashkina VA, Goodyear RJ, Kössi M, Russell IJ, Richardson GP.

Neuron. 2000 Oct;28(1):273-85.

12.

Deformations of the isolated mouse tectorial membrane produced by oscillatory forces.

Abnet CC, Freeman DM.

Hear Res. 2000 Jun;144(1-2):29-46.

PMID:
10831863
13.

Three-dimensional motion of the organ of Corti.

Hemmert W, Zenner HP, Gummer AW.

Biophys J. 2000 May;78(5):2285-97.

14.

Active hair-bundle movements can amplify a hair cell's response to oscillatory mechanical stimuli.

Martin P, Hudspeth AJ.

Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14306-11.

15.

Direct visualization of organ of corti kinematics in a hemicochlea.

Hu X, Evans BN, Dallos P.

J Neurophysiol. 1999 Nov;82(5):2798-807.

16.

Measurements of the stiffness map challenge a basic tenet of cochlear theories.

Naidu RC, Mountain DC.

Hear Res. 1998 Oct;124(1-2):124-31.

PMID:
9822910
17.

Morphology of the unfixed cochlea.

Edge RM, Evans BN, Pearce M, Richter CP, Hu X, Dallos P.

Hear Res. 1998 Oct;124(1-2):1-16.

PMID:
9822898
18.

Basilar membrane vibration in the gerbil hemicochlea.

Richter CP, Evans BN, Edge R, Dallos P.

J Neurophysiol. 1998 May;79(5):2255-64.

19.

Basilar-membrane responses to tones at the base of the chinchilla cochlea.

Ruggero MA, Rich NC, Recio A, Narayan SS, Robles L.

J Acoust Soc Am. 1997 Apr;101(4):2151-63.

20.

Resonant tectorial membrane motion in the inner ear: its crucial role in frequency tuning.

Gummer AW, Hemmert W, Zenner HP.

Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8727-32.

Items per page

Supplemental Content

Write to the Help Desk