Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 24

References for PMC Articles for PubMed (Select 1650486)

1.

Millisecond Fourier-transform infrared difference spectra of bacteriorhodopsin's M412 photoproduct.

Braiman MS, Ahl PL, Rothschild KJ.

Proc Natl Acad Sci U S A. 1987 Aug;84(15):5221-5.

2.

Aspartic acid substitutions affect proton translocation by bacteriorhodopsin.

Mogi T, Stern LJ, Marti T, Chao BH, Khorana HG.

Proc Natl Acad Sci U S A. 1988 Jun;85(12):4148-52.

3.

Bacteriorhodopsin photoreaction: identification of a long-lived intermediate N (P,R350) at high pH and its M-like photoproduct.

Kouyama T, Nasuda-Kouyama A, Ikegami A, Mathew MK, Stoeckenius W.

Biochemistry. 1988 Aug 9;27(16):5855-63.

PMID:
3191097
4.

Vibrational spectroscopy of bacteriorhodopsin mutants: light-driven proton transport involves protonation changes of aspartic acid residues 85, 96, and 212.

Braiman MS, Mogi T, Marti T, Stern LJ, Khorana HG, Rothschild KJ.

Biochemistry. 1988 Nov 15;27(23):8516-20.

PMID:
2851326
5.

Chromophore structure in bacteriorhodopsin's N intermediate: implications for the proton-pumping mechanism.

Fodor SP, Ames JB, Gebhard R, van den Berg EM, Stoeckenius W, Lugtenburg J, Mathies RA.

Biochemistry. 1988 Sep 6;27(18):7097-101.

PMID:
2848578
6.

Bacteriorhodopsin, a membrane protein that uses light to translocate protons.

Khorana HG.

J Biol Chem. 1988 Jun 5;263(16):7439-42. Review. No abstract available.

8.

Aspartic acid-96 is the internal proton donor in the reprotonation of the Schiff base of bacteriorhodopsin.

Otto H, Marti T, Holz M, Mogi T, Lindau M, Khorana HG, Heyn MP.

Proc Natl Acad Sci U S A. 1989 Dec;86(23):9228-32.

9.

Aspartic acids 96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump.

Butt HJ, Fendler K, Bamberg E, Tittor J, Oesterhelt D.

EMBO J. 1989 Jun;8(6):1657-63.

11.

Role of aspartate-96 in proton translocation by bacteriorhodopsin.

Gerwert K, Hess B, Soppa J, Oesterhelt D.

Proc Natl Acad Sci U S A. 1989 Jul;86(13):4943-7.

12.

Replacement of aspartic residues 85, 96, 115, or 212 affects the quantum yield and kinetics of proton release and uptake by bacteriorhodopsin.

Marinetti T, Subramaniam S, Mogi T, Marti T, Khorana HG.

Proc Natl Acad Sci U S A. 1989 Jan;86(2):529-33.

13.

Transmembrane location of retinal in bacteriorhodopsin by neutron diffraction.

Hauss T, Grzesiek S, Otto H, Westerhausen J, Heyn MP.

Biochemistry. 1990 May 22;29(20):4904-13.

PMID:
2364067
14.

Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy.

Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH.

J Mol Biol. 1990 Jun 20;213(4):899-929.

PMID:
2359127
15.

Ultraviolet-visible transient spectroscopy of bacteriorhodopsin mutants. Evidence for two forms of tyrosine-185----phenylalanine.

Duñach M, Berkowitz S, Marti T, He YW, Subramaniam S, Khorana HG, Rothschild KJ.

J Biol Chem. 1990 Oct 5;265(28):16978-84.

17.

Substitution of amino acids Asp-85, Asp-212, and Arg-82 in bacteriorhodopsin affects the proton release phase of the pump and the pK of the Schiff base.

Otto H, Marti T, Holz M, Mogi T, Stern LJ, Engel F, Khorana HG, Heyn MP.

Proc Natl Acad Sci U S A. 1990 Feb;87(3):1018-22.

18.

The reaction of hydroxylamine with bacteriorhodopsin studied with mutants that have altered photocycles: selective reactivity of different photointermediates.

Subramaniam S, Marti T, Rösselet SJ, Rothschild KJ, Khorana HG.

Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2583-7.

19.
20.

Time-resolved X-ray diffraction study of structural changes associated with the photocycle of bacteriorhodopsin.

Koch MH, Dencher NA, Oesterhelt D, Plöhn HJ, Rapp G, Büldt G.

EMBO J. 1991 Mar;10(3):521-6.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk