Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 154

1.

A chemical approach to systematically designate the pyranopterin centers of molybdenum and tungsten enzymes and synthetic models.

Fischer B, Enemark JH, Basu P.

J Inorg Biochem. 1998 Oct;72(1-2):13-21.

PMID:
9861725
[PubMed - indexed for MEDLINE]
2.

Pyranopterin conformation defines the function of molybdenum and tungsten enzymes.

Rothery RA, Stein B, Solomonson M, Kirk ML, Weiner JH.

Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14773-8. doi: 10.1073/pnas.1200671109. Epub 2012 Aug 27.

PMID:
22927383
[PubMed - indexed for MEDLINE]
Free PMC Article
3.

Which functional groups of the molybdopterin ligand should be considered when modeling the active sites of the molybdenum and tungsten cofactors? A density functional theory study.

Ryde U, Schulzke C, Starke K.

J Biol Inorg Chem. 2009 Sep;14(7):1053-64. doi: 10.1007/s00775-009-0548-y. Epub 2009 May 29.

PMID:
19479286
[PubMed - indexed for MEDLINE]
Free PMC Article
4.

The active sites of molybdenum- and tungsten-containing enzymes.

McMaster J, Enemark JH.

Curr Opin Chem Biol. 1998 Apr;2(2):201-7. Review.

PMID:
9667924
[PubMed - indexed for MEDLINE]
5.

Structure of the molybdopterin-bound Cnx1G domain links molybdenum and copper metabolism.

Kuper J, Llamas A, Hecht HJ, Mendel RR, Schwarz G.

Nature. 2004 Aug 12;430(7001):803-6.

PMID:
15306815
[PubMed - indexed for MEDLINE]
6.

Identification of molybdopterin as the organic component of the tungsten cofactor in four enzymes from hyperthermophilic Archaea.

Johnson JL, Rajagopalan KV, Mukund S, Adams MW.

J Biol Chem. 1993 Mar 5;268(7):4848-52.

PMID:
8444863
[PubMed - indexed for MEDLINE]
Free Article
7.

Molybdenum and tungsten enzymes: a crystallographic and mechanistic overview.

Romão MJ.

Dalton Trans. 2009 Jun 7;(21):4053-68. doi: 10.1039/b821108f. Epub 2009 Mar 14. Review.

PMID:
19452052
[PubMed - indexed for MEDLINE]
8.

A structural comparison of molybdenum cofactor-containing enzymes.

Kisker C, Schindelin H, Baas D, Rétey J, Meckenstock RU, Kroneck PM.

FEMS Microbiol Rev. 1998 Dec;22(5):503-21. Review.

PMID:
9990727
[PubMed - indexed for MEDLINE]
9.

Structure and reversible pyran formation in molybdenum pyranopterin dithiolene models of the molybdenum cofactor.

Williams BR, Fu Y, Yap GP, Burgmayer SJ.

J Am Chem Soc. 2012 Dec 5;134(48):19584-7. doi: 10.1021/ja310018e. Epub 2012 Nov 20.

PMID:
23157708
[PubMed - indexed for MEDLINE]
Free PMC Article
10.

Models for the pyranopterin-containing molybdenum and tungsten cofactors.

Fischer B, Burgmayer SJ.

Met Ions Biol Syst. 2002;39:265-316. Review. No abstract available.

PMID:
11913128
[PubMed - indexed for MEDLINE]
11.

Investigation of metal-dithiolate fold angle effects: implications for molybdenum and tungsten enzymes.

Joshi HK, Cooney JJ, Inscore FE, Gruhn NE, Lichtenberger DL, Enemark JH.

Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3719-24. Epub 2003 Mar 24.

PMID:
12655066
[PubMed - indexed for MEDLINE]
Free PMC Article
12.

Crystal structure of a molybdopterin synthase-precursor Z complex: insight into its sulfur transfer mechanism and its role in molybdenum cofactor deficiency.

Daniels JN, Wuebbens MM, Rajagopalan KV, Schindelin H.

Biochemistry. 2008 Jan 15;47(2):615-26. Epub 2007 Dec 20. Erratum in: Biochemistry. 2008 Mar 11;47(10):3315.

PMID:
18092812
[PubMed - indexed for MEDLINE]
13.

Chemical analogues relevant to molybdenum and tungsten enzyme reaction centres toward structural dynamics and reaction diversity.

Sugimoto H, Tsukube H.

Chem Soc Rev. 2008 Dec;37(12):2609-19. doi: 10.1039/b610235m. Epub 2008 Sep 30. Review.

PMID:
19020675
[PubMed - indexed for MEDLINE]
14.
15.

The molybdenum and tungsten cofactors: a crystallographic view.

Dobbek H, Huber R.

Met Ions Biol Syst. 2002;39:227-63. Review. No abstract available.

PMID:
11913127
[PubMed - indexed for MEDLINE]
16.

Incorporation of either molybdenum or tungsten into formate dehydrogenase from Desulfovibrio alaskensis NCIMB 13491; EPR assignment of the proximal iron-sulfur cluster to the pterin cofactor in formate dehydrogenases from sulfate-reducing bacteria.

Brondino CD, Passeggi MC, Caldeira J, Almendra MJ, Feio MJ, Moura JJ, Moura I.

J Biol Inorg Chem. 2004 Mar;9(2):145-51. Epub 2003 Dec 11.

PMID:
14669076
[PubMed - indexed for MEDLINE]
17.

Molybdenum and tungsten oxygen transferases--and functional diversity within a common active site motif.

Pushie MJ, Cotelesage JJ, George GN.

Metallomics. 2014 Jan;6(1):15-24. doi: 10.1039/c3mt00177f. Review.

PMID:
24068390
[PubMed - indexed for MEDLINE]
18.

Redox reactions of the pyranopterin system of the molybdenum cofactor.

Nieter Burgmayer SJ, Pearsall DL, Blaney SM, Moore EM, Sauk-Schubert C.

J Biol Inorg Chem. 2004 Jan;9(1):59-66. Epub 2003 Nov 20.

PMID:
14628171
[PubMed - indexed for MEDLINE]
19.

Promotion of oxygen atom transfer in Mo and W enzymes by bicyclic forms of the pterin cofactor.

McNamara JP, Joule JA, Hillier IH, Garner CD.

Chem Commun (Camb). 2005 Jan 14;(2):177-9. Epub 2004 Dec 2.

PMID:
15724177
[PubMed - indexed for MEDLINE]
20.

The pterin of the molybdenum cofactor.

Rajagopalan KV, Johnson JL, Hainline BE.

Fed Proc. 1982 Jul;41(9):2608-12.

PMID:
6953016
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk