Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 244

1.

Adult opossums (Didelphis virginiana) demonstrate near normal locomotion after spinal cord transection as neonates.

Wang XM, Basso DM, Terman JR, Bresnahan JC, Martin GF.

Exp Neurol. 1998 May;151(1):50-69.

PMID:
9582254
[PubMed - indexed for MEDLINE]
2.

Regeneration of descending spinal axons after transection of the thoracic spinal cord during early development in the North American opossum, Didelphis virginiana.

Martin GF, Terman JR, Wang XM.

Brain Res Bull. 2000 Nov 15;53(5):677-87. Review.

PMID:
11165803
[PubMed - indexed for MEDLINE]
3.

Early development and developmental plasticity of the fasciculus gracilis in the North American opossum (Didelphis virginiana).

Wang XM, Qin YQ, Terman JR, Martin GF.

Brain Res Dev Brain Res. 1997 Feb 20;98(2):151-63.

PMID:
9051256
[PubMed - indexed for MEDLINE]
4.

Regeneration of supraspinal axons after transection of the thoracic spinal cord in the developing opossum, Didelphis virginiana.

Wang XM, Terman JR, Martin GF.

J Comp Neurol. 1998 Aug 17;398(1):83-97.

PMID:
9703028
[PubMed - indexed for MEDLINE]
5.

Evidence for growth of supraspinal axons through the lesion after transection of the thoracic spinal cord in the developing opossum Didelphis virginiana.

Wang XM, Terman JR, Martin GF.

J Comp Neurol. 1996 Jul 15;371(1):104-15.

PMID:
8835721
[PubMed - indexed for MEDLINE]
6.

Growth of dorsal spinocerebellar axons through a lesion of their spinal pathway during early development in the North American opossum, Didelphis virginiana.

Terman JR, Wang XM, Martin GF.

Brain Res Dev Brain Res. 1996 May 31;93(1-2):33-48.

PMID:
8804690
[PubMed - indexed for MEDLINE]
7.

Developmental plasticity of ascending spinal axons studies using the North American opossum, Didelphis virginiana.

Terman JR, Wang XM, Martin GF.

Brain Res Dev Brain Res. 1999 Jan 11;112(1):65-77.

PMID:
9974160
[PubMed - indexed for MEDLINE]
8.

Transplants and neurotrophic factors increase regeneration and recovery of function after spinal cord injury.

Bregman BS, Coumans JV, Dai HN, Kuhn PL, Lynskey J, McAtee M, Sandhu F.

Prog Brain Res. 2002;137:257-73. Review.

PMID:
12440372
[PubMed - indexed for MEDLINE]
9.

Repair of the transected spinal cord at different stages of development in the North American opossum, Didelphis virginiana.

Terman JR, Wang XM, Martin GF.

Brain Res Bull. 2000 Dec;53(6):845-55.

PMID:
11179852
[PubMed - indexed for MEDLINE]
10.

Evidence for new growth and regeneration of cut axons in developmental plasticity of the rubrospinal tract in the North American opossum.

Xu XM, Martin GF.

J Comp Neurol. 1991 Nov 1;313(1):103-12.

PMID:
1761748
[PubMed - indexed for MEDLINE]
11.

Extension and regeneration of corticospinal axons after early spinal injury and the maintenance of corticospinal topography.

Bates CA, Stelzner DJ.

Exp Neurol. 1993 Sep;123(1):106-17.

PMID:
8405271
[PubMed - indexed for MEDLINE]
12.

Anatomical and functional recovery following spinal cord transection in the chick embryo.

Shimizu I, Oppenheim RW, O'Brien M, Shneiderman A.

J Neurobiol. 1990 Sep;21(6):918-37.

PMID:
2077104
[PubMed - indexed for MEDLINE]
13.

Regeneration of supraspinal axons after complete transection of the thoracic spinal cord in neonatal opossums (Monodelphis domestica).

Fry EJ, Stolp HB, Lane MA, Dziegielewska KM, Saunders NR.

J Comp Neurol. 2003 Nov 17;466(3):422-44.

PMID:
14556298
[PubMed - indexed for MEDLINE]
14.

Development of walking, swimming and neuronal connections after complete spinal cord transection in the neonatal opossum, Monodelphis domestica.

Saunders NR, Kitchener P, Knott GW, Nicholls JG, Potter A, Smith TJ.

J Neurosci. 1998 Jan 1;18(1):339-55.

PMID:
9412512
[PubMed - indexed for MEDLINE]
Free Article
15.

Motor recovery and anatomical evidence of axonal regrowth in spinal cord-repaired adult rats.

Lee YS, Lin CY, Robertson RT, Hsiao I, Lin VW.

J Neuropathol Exp Neurol. 2004 Mar;63(3):233-45.

PMID:
15055447
[PubMed - indexed for MEDLINE]
16.

Functional recovery of stepping in rats after a complete neonatal spinal cord transection is not due to regrowth across the lesion site.

Tillakaratne NJ, Guu JJ, de Leon RD, Bigbee AJ, London NJ, Zhong H, Ziegler MD, Joynes RL, Roy RR, Edgerton VR.

Neuroscience. 2010 Mar 10;166(1):23-33. doi: 10.1016/j.neuroscience.2009.12.010. Epub 2009 Dec 17.

PMID:
20006680
[PubMed - indexed for MEDLINE]
Free PMC Article
17.

Weight-bearing locomotion in the developing opossum, Monodelphis domestica following spinal transection: remodeling of neuronal circuits caudal to lesion.

Wheaton BJ, Noor NM, Whish SC, Truettner JS, Dietrich WD, Zhang M, Crack PJ, Dziegielewska KM, Saunders NR.

PLoS One. 2013 Aug 12;8(8):e71181. doi: 10.1371/journal.pone.0071181. eCollection 2013.

PMID:
23951105
[PubMed - indexed for MEDLINE]
Free PMC Article
18.

Developmental plasticity of the rubrospinal tract in the North American opossum.

Xu XM, Martin GF.

J Comp Neurol. 1989 Jan 15;279(3):368-81.

PMID:
2465321
[PubMed - indexed for MEDLINE]
19.

Transplants enhance locomotion in neonatal kittens whose spinal cords are transected: a behavioral and anatomical study.

Howland DR, Bregman BS, Tessler A, Goldberger ME.

Exp Neurol. 1995 Oct;135(2):123-45.

PMID:
7589324
[PubMed - indexed for MEDLINE]
20.

Time course of locomotor recovery and functional regeneration in spinal cord-transected lamprey: in vitro preparations.

McClellan AD.

J Neurophysiol. 1994 Aug;72(2):847-60.

PMID:
7983540
[PubMed - indexed for MEDLINE]
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk