Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 159

Similar articles for PubMed (Select 9546033)

1.

Genetic analysis of iron uptake in the yeast Saccharomyces cerevisiae.

Dancis A.

J Pediatr. 1998 Mar;132(3 Pt 2):S24-9. Review.

PMID:
9546033
2.

The yeast FET5 gene encodes a FET3-related multicopper oxidase implicated in iron transport.

Spizzo T, Byersdorfer C, Duesterhoeft S, Eide D.

Mol Gen Genet. 1997 Nov;256(5):547-56.

PMID:
9413439
3.

The AFT1 transcriptional factor is differentially required for expression of high-affinity iron uptake genes in Saccharomyces cerevisiae.

Casas C, Aldea M, Espinet C, Gallego C, Gil R, Herrero E.

Yeast. 1997 Jun 15;13(7):621-37.

PMID:
9200812
4.

A genetic approach to elucidating eukaryotic iron metabolism.

Klausner RD, Dancis A.

FEBS Lett. 1994 Nov 28;355(2):109-13. Review.

5.

Molecular biology of iron acquisition in Saccharomyces cerevisiae.

Askwith CC, de Silva D, Kaplan J.

Mol Microbiol. 1996 Apr;20(1):27-34. Review.

PMID:
8861201
6.

The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake.

Yuan DS, Stearman R, Dancis A, Dunn T, Beeler T, Klausner RD.

Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2632-6.

7.

AFT1: a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae.

Yamaguchi-Iwai Y, Dancis A, Klausner RD.

EMBO J. 1995 Mar 15;14(6):1231-9.

8.

Iron-regulated DNA binding by the AFT1 protein controls the iron regulon in yeast.

Yamaguchi-Iwai Y, Stearman R, Dancis A, Klausner RD.

EMBO J. 1996 Jul 1;15(13):3377-84.

9.

A permease-oxidase complex involved in high-affinity iron uptake in yeast.

Stearman R, Yuan DS, Yamaguchi-Iwai Y, Klausner RD, Dancis A.

Science. 1996 Mar 15;271(5255):1552-7.

PMID:
8599111
10.

The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake.

Askwith C, Eide D, Van Ho A, Bernard PS, Li L, Davis-Kaplan S, Sipe DM, Kaplan J.

Cell. 1994 Jan 28;76(2):403-10.

PMID:
8293473
11.
12.

Metalloregulation of FRE1 and FRE2 homologs in Saccharomyces cerevisiae.

Martins LJ, Jensen LT, Simon JR, Keller GL, Winge DR.

J Biol Chem. 1998 Sep 11;273(37):23716-21. Erratum in: J Biol Chem 1998 Nov 6;273(45):30056. Simons JR [corrected to Simon JR].

13.

Evidence for a copper-dependent iron transport system in the marine, magnetotactic bacterium strain MV-1.

Dubbels BL, DiSpirito AA, Morton JD, Semrau JD, Neto JN, Bazylinski DA.

Microbiology. 2004 Sep;150(Pt 9):2931-45.

14.

Reductive iron uptake by Candida albicans: role of copper, iron and the TUP1 regulator.

Knight SA, Lesuisse E, Stearman R, Klausner RD, Dancis A.

Microbiology. 2002 Jan;148(Pt 1):29-40.

15.

Identification of the copper regulon in Saccharomyces cerevisiae by DNA microarrays.

Gross C, Kelleher M, Iyer VR, Brown PO, Winge DR.

J Biol Chem. 2000 Oct 13;275(41):32310-6.

16.

Homeostatic regulation of copper uptake in yeast via direct binding of MAC1 protein to upstream regulatory sequences of FRE1 and CTR1.

Yamaguchi-Iwai Y, Serpe M, Haile D, Yang W, Kosman DJ, Klausner RD, Dancis A.

J Biol Chem. 1997 Jul 11;272(28):17711-8.

17.

Copper and iron are the limiting factors for growth of the yeast Saccharomyces cerevisiae in an alkaline environment.

Serrano R, Bernal D, Simón E, Ariño J.

J Biol Chem. 2004 May 7;279(19):19698-704. Epub 2004 Mar 1.

18.

Fre1p Cu2+ reduction and Fet3p Cu1+ oxidation modulate copper toxicity in Saccharomyces cerevisiae.

Shi X, Stoj C, Romeo A, Kosman DJ, Zhu Z.

J Biol Chem. 2003 Dec 12;278(50):50309-15. Epub 2003 Sep 3.

19.
20.

Homology modeling of the multicopper oxidase Fet3 gives new insights in the mechanism of iron transport in yeast.

di Patti MC, Pascarella S, Catalucci D, Calabrese L.

Protein Eng. 1999 Nov;12(11):895-7.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk