Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 224

Similar articles for PubMed (Select 9226262)

1.

Microbial degradation of chloroaromatics: use of the meta-cleavage pathway for mineralization of chlorobenzene.

Mars AE, Kasberg T, Kaschabek SR, van Agteren MH, Janssen DB, Reineke W.

J Bacteriol. 1997 Jul;179(14):4530-7.

2.

Simultaneous biodegradation of chlorobenzene and toluene by a Pseudomonas strain.

Pettigrew CA, Haigler BE, Spain JC.

Appl Environ Microbiol. 1991 Jan;57(1):157-62.

3.

Ferredoxin-mediated reactivation of the chlorocatechol 2,3-dioxygenase from Pseudomonas putida GJ31.

Tropel D, Meyer C, Armengaud J, Jouanneau Y.

Arch Microbiol. 2002 Apr;177(4):345-51. Epub 2002 Feb 2.

PMID:
11889489
4.
5.

Microorganisms degrading chlorobenzene via a meta-cleavage pathway harbor highly similar chlorocatechol 2,3-dioxygenase-encoding gene clusters.

Göbel M, Kranz OH, Kaschabek SR, Schmidt E, Pieper DH, Reineke W.

Arch Microbiol. 2004 Oct;182(2-3):147-56. Epub 2004 Aug 31.

PMID:
15340793
6.

Degradation of chloroaromatics by Pseudomonas putida GJ31: assembled route for chlorobenzene degradation encoded by clusters on plasmid pKW1 and the chromosome.

Kunze M, Zerlin KF, Retzlaff A, Pohl JO, Schmidt E, Janssen DB, Vilchez-Vargas R, Pieper DH, Reineke W.

Microbiology. 2009 Dec;155(Pt 12):4069-83. doi: 10.1099/mic.0.032110-0. Epub 2009 Sep 10.

7.

Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol.

Klecka GM, Gibson DT.

Appl Environ Microbiol. 1981 May;41(5):1159-65.

8.

Degradation of chloroaromatics: purification and characterization of a novel type of chlorocatechol 2,3-dioxygenase of Pseudomonas putida GJ31.

Kaschabek SR, Kasberg T, Müller D, Mars AE, Janssen DB, Reineke W.

J Bacteriol. 1998 Jan;180(2):296-302.

9.

Conjugal transfer of a TOL-like plasmid and extension of the catabolic potential of Pseudomonas putida F1.

Hallier-Soulier S, Ducrocq V, Truffaut N.

Can J Microbiol. 1999 Nov;45(11):898-904.

PMID:
10588042
10.

TOL plasmid pWW0 in constructed halobenzoate-degrading Pseudomonas strains: prevention of meta pathway.

Reineke W, Jeenes DJ, Williams PA, Knackmuss HJ.

J Bacteriol. 1982 Apr;150(1):195-201.

11.

Microbial degradation of chlorobenzene under oxygen-limited conditions leads to accumulation of 3-chlorocatechol.

Vogt C, Simon D, Alfreider A, Babel W.

Environ Toxicol Chem. 2004 Feb;23(2):265-70.

PMID:
14982371
12.

Degradation of phenol and phenolic compounds by Pseudomonas putida EKII.

Hinteregger C, Leitner R, Loidl M, Ferschl A, Streichsbier F.

Appl Microbiol Biotechnol. 1992 May;37(2):252-9.

PMID:
1368244
13.

Catabolite-mediated mutations in alternate toluene degradative pathways in Pseudomonas putida.

Leddy MB, Phipps DW, Ridgway HF.

J Bacteriol. 1995 Aug;177(16):4713-20.

14.
17.

Transcriptional activation of the catechol and chlorocatechol operons: variations on a theme.

McFall SM, Chugani SA, Chakrabarty AM.

Gene. 1998 Nov 26;223(1-2):257-67. Review.

PMID:
9858745
18.
19.

[Cloning and expression of catA gene from Pseudomonas putida ND6 and study on the catechol cleavage pathway].

Zhao HB, Chen W, Cai BL.

Wei Sheng Wu Xue Bao. 2007 Jun;47(3):387-91. Chinese.

PMID:
17672292
20.

Biocatalytic synthesis of polycatechols from toxic aromatic compounds.

Ward G, Parales RE, Dosoretz CG.

Environ Sci Technol. 2004 Sep 15;38(18):4753-7.

PMID:
15487783
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk