Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 128

1.

The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection.

Slekar KH, Kosman DJ, Culotta VC.

J Biol Chem. 1996 Nov 15;271(46):28831-6.

PMID:
8910528
[PubMed - indexed for MEDLINE]
Free Article
2.

Mutations in Saccharomyces cerevisiae iron-sulfur cluster assembly genes and oxidative stress relevant to Cu,Zn superoxide dismutase.

Jensen LT, Sanchez RJ, Srinivasan C, Valentine JS, Culotta VC.

J Biol Chem. 2004 Jul 16;279(29):29938-43. Epub 2004 Apr 23.

PMID:
15107423
[PubMed - indexed for MEDLINE]
Free Article
3.

Cu, Zn superoxide dismutase and NADP(H) homeostasis are required for tolerance of endoplasmic reticulum stress in Saccharomyces cerevisiae.

Tan SX, Teo M, Lam YT, Dawes IW, Perrone GG.

Mol Biol Cell. 2009 Mar;20(5):1493-508. doi: 10.1091/mbc.E08-07-0697. Epub 2009 Jan 7.

PMID:
19129474
[PubMed - indexed for MEDLINE]
Free PMC Article
4.

Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae.

Matsushika A, Goshima T, Fujii T, Inoue H, Sawayama S, Yano S.

Enzyme Microb Technol. 2012 Jun 10;51(1):16-25. doi: 10.1016/j.enzmictec.2012.03.008. Epub 2012 Apr 4.

PMID:
22579386
[PubMed - indexed for MEDLINE]
5.

Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress.

Juhnke H, Krems B, Kötter P, Entian KD.

Mol Gen Genet. 1996 Sep 25;252(4):456-64.

PMID:
8879247
[PubMed - indexed for MEDLINE]
6.

Pentose-phosphate pathway in Saccharomyces cerevisiae: analysis of deletion mutants for transketolase, transaldolase, and glucose 6-phosphate dehydrogenase.

Schaaff-Gerstenschläger I, Zimmermann FK.

Curr Genet. 1993 Nov;24(5):373-6.

PMID:
8299150
[PubMed - indexed for MEDLINE]
7.

Suppressors of superoxide dismutase (SOD1) deficiency in Saccharomyces cerevisiae. Identification of proteins predicted to mediate iron-sulfur cluster assembly.

Strain J, Lorenz CR, Bode J, Garland S, Smolen GA, Ta DT, Vickery LE, Culotta VC.

J Biol Chem. 1998 Nov 20;273(47):31138-44.

PMID:
9813017
[PubMed - indexed for MEDLINE]
Free Article
8.

Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae.

Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD.

Appl Microbiol Biotechnol. 2006 Jul;71(3):339-49. Epub 2005 Oct 13.

PMID:
16222531
[PubMed - indexed for MEDLINE]
9.

The Saccharomyces cerevisiae zinc factor protein Stb5p is required as a basal regulator of the pentose phosphate pathway.

Cadière A, Galeote V, Dequin S.

FEMS Yeast Res. 2010 Nov;10(7):819-27. doi: 10.1111/j.1567-1364.2010.00672.x. Epub 2010 Aug 25.

PMID:
20738406
[PubMed - indexed for MEDLINE]
10.

Yeast and mammalian metallothioneins functionally substitute for yeast copper-zinc superoxide dismutase.

Tamai KT, Gralla EB, Ellerby LM, Valentine JS, Thiele DJ.

Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8013-7.

PMID:
8367458
[PubMed - indexed for MEDLINE]
Free PMC Article
11.

Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase.

Walfridsson M, Hallborn J, Penttilä M, Keränen S, Hahn-Hägerdal B.

Appl Environ Microbiol. 1995 Dec;61(12):4184-90.

PMID:
8534086
[PubMed - indexed for MEDLINE]
Free PMC Article
12.

Oxidative stress and iron are implicated in fragmenting vacuoles of Saccharomyces cerevisiae lacking Cu,Zn-superoxide dismutase.

Corson LB, Folmer J, Strain JJ, Culotta VC, Cleveland DW.

J Biol Chem. 1999 Sep 24;274(39):27590-6.

PMID:
10488097
[PubMed - indexed for MEDLINE]
Free Article
13.
14.

Loss of SOD1 and LYS7 sensitizes Saccharomyces cerevisiae to hydroxyurea and DNA damage agents and downregulates MEC1 pathway effectors.

Carter CD, Kitchen LE, Au WC, Babic CM, Basrai MA.

Mol Cell Biol. 2005 Dec;25(23):10273-85.

PMID:
16287844
[PubMed - indexed for MEDLINE]
Free PMC Article
16.

O2-dependent methionine auxotrophy in Cu,Zn superoxide dismutase-deficient mutants of Saccharomyces cerevisiae.

Chang EC, Kosman DJ.

J Bacteriol. 1990 Apr;172(4):1840-5.

PMID:
2180907
[PubMed - indexed for MEDLINE]
Free PMC Article
17.

Evidence for a novel role of copper-zinc superoxide dismutase in zinc metabolism.

Wei JP, Srinivasan C, Han H, Valentine JS, Gralla EB.

J Biol Chem. 2001 Nov 30;276(48):44798-803. Epub 2001 Oct 1.

PMID:
11581253
[PubMed - indexed for MEDLINE]
Free Article
18.

The Saccharomyces cerevisiae LYS7 gene is involved in oxidative stress protection.

Gamonet F, Lauquin GJ.

Eur J Biochem. 1998 Feb 1;251(3):716-23.

PMID:
9490044
[PubMed - indexed for MEDLINE]
Free Article
19.
20.

A physiological role for Saccharomyces cerevisiae copper/zinc superoxide dismutase in copper buffering.

Culotta VC, Joh HD, Lin SJ, Slekar KH, Strain J.

J Biol Chem. 1995 Dec 15;270(50):29991-7.

PMID:
8530401
[PubMed - indexed for MEDLINE]
Free Article

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk