Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 105

1.

A small molecule inhibitor of redox-regulated protein translocation into mitochondria.

Dabir DV, Hasson SA, Setoguchi K, Johnson ME, Wongkongkathep P, Douglas CJ, Zimmerman J, Damoiseaux R, Teitell MA, Koehler CM.

Dev Cell. 2013 Apr 15;25(1):81-92. doi: 10.1016/j.devcel.2013.03.006.

2.

Substrate specificity of the TIM22 mitochondrial import pathway revealed with small molecule inhibitor of protein translocation.

Hasson SA, Damoiseaux R, Glavin JD, Dabir DV, Walker SS, Koehler CM.

Proc Natl Acad Sci U S A. 2010 May 25;107(21):9578-83. doi: 10.1073/pnas.0914387107. Epub 2010 May 10.

3.

Mia40 Protein Serves as an Electron Sink in the Mia40-Erv1 Import Pathway.

Neal SE, Dabir DV, Tienson HL, Horn DM, Glaeser K, Ogozalek Loo RR, Barrientos A, Koehler CM.

J Biol Chem. 2015 Aug 21;290(34):20804-14. doi: 10.1074/jbc.M115.669440. Epub 2015 Jun 17.

PMID:
26085103
4.

Erv1 mediates the Mia40-dependent protein import pathway and provides a functional link to the respiratory chain by shuttling electrons to cytochrome c.

Allen S, Balabanidou V, Sideris DP, Lisowsky T, Tokatlidis K.

J Mol Biol. 2005 Nov 11;353(5):937-44. Epub 2005 Sep 15.

PMID:
16185707
5.

The sulfhydryl oxidase Erv1 is a substrate of the Mia40-dependent protein translocation pathway.

Terziyska N, Grumbt B, Bien M, Neupert W, Herrmann JM, Hell K.

FEBS Lett. 2007 Mar 20;581(6):1098-102. Epub 2007 Feb 15.

6.

The Erv1-Mia40 disulfide relay system in the intermembrane space of mitochondria.

Hell K.

Biochim Biophys Acta. 2008 Apr;1783(4):601-9. doi: 10.1016/j.bbamcr.2007.12.005. Epub 2007 Dec 15. Review.

7.

The MIA pathway: a key regulator of mitochondrial oxidative protein folding and biogenesis.

Mordas A, Tokatlidis K.

Acc Chem Res. 2015 Aug 18;48(8):2191-9. doi: 10.1021/acs.accounts.5b00150. Epub 2015 Jul 27.

8.

Structural and functional roles of the conserved cysteine residues of the redox-regulated import receptor Mia40 in the intermembrane space of mitochondria.

Terziyska N, Grumbt B, Kozany C, Hell K.

J Biol Chem. 2009 Jan 16;284(3):1353-63. doi: 10.1074/jbc.M805035200. Epub 2008 Nov 14.

9.

Protein import and oxidative folding in the mitochondrial intermembrane space of intact mammalian cells.

Fischer M, Horn S, Belkacemi A, Kojer K, Petrungaro C, Habich M, Ali M, Küttner V, Bien M, Kauff F, Dengjel J, Herrmann JM, Riemer J.

Mol Biol Cell. 2013 Jul;24(14):2160-70. doi: 10.1091/mbc.E12-12-0862. Epub 2013 May 15.

10.

Distinctive biochemistry in the trypanosome mitochondrial intermembrane space suggests a model for stepwise evolution of the MIA pathway for import of cysteine-rich proteins.

Allen JW, Ferguson SJ, Ginger ML.

FEBS Lett. 2008 Aug 20;582(19):2817-25. doi: 10.1016/j.febslet.2008.07.015. Epub 2008 Jul 17.

11.

Reconstitution of the mia40-erv1 oxidative folding pathway for the small tim proteins.

Tienson HL, Dabir DV, Neal SE, Loo R, Hasson SA, Boontheung P, Kim SK, Loo JA, Koehler CM.

Mol Biol Cell. 2009 Aug;20(15):3481-90. doi: 10.1091/mbc.E08-10-1062. Epub 2009 May 28.

12.

Role of twin Cys-Xaa9-Cys motif cysteines in mitochondrial import of the cytochrome C oxidase biogenesis factor Cmc1.

Bourens M, Dabir DV, Tienson HL, Sorokina I, Koehler CM, Barrientos A.

J Biol Chem. 2012 Sep 7;287(37):31258-69. doi: 10.1074/jbc.M112.383562. Epub 2012 Jul 5.

13.

Mitochondrial Ccs1 contains a structural disulfide bond crucial for the import of this unconventional substrate by the disulfide relay system.

Gross DP, Burgard CA, Reddehase S, Leitch JM, Culotta VC, Hell K.

Mol Biol Cell. 2011 Oct;22(20):3758-67. doi: 10.1091/mbc.E11-04-0296. Epub 2011 Aug 24.

14.

Targeting and import mechanism of coiled-coil helix coiled-coil helix domain-containing protein 3 (ChChd3) into the mitochondrial intermembrane space.

Darshi M, Trinh KN, Murphy AN, Taylor SS.

J Biol Chem. 2012 Nov 16;287(47):39480-91. doi: 10.1074/jbc.M112.387696. Epub 2012 Sep 27.

15.

The N-terminal shuttle domain of Erv1 determines the affinity for Mia40 and mediates electron transfer to the catalytic Erv1 core in yeast mitochondria.

Lionaki E, Aivaliotis M, Pozidis C, Tokatlidis K.

Antioxid Redox Signal. 2010 Nov 1;13(9):1327-39. doi: 10.1089/ars.2010.3200.

PMID:
20367271
16.

Precursor oxidation by Mia40 and Erv1 promotes vectorial transport of proteins into the mitochondrial intermembrane space.

Müller JM, Milenkovic D, Guiard B, Pfanner N, Chacinska A.

Mol Biol Cell. 2008 Jan;19(1):226-36. Epub 2007 Oct 31. Erratum in: Mol Biol Cell. 2014 Apr;25(8):1408.

17.

Biogenesis of yeast Mia40 - uncoupling folding from import and atypical recognition features.

Chatzi A, Sideris DP, Katrakili N, Pozidis C, Tokatlidis K.

FEBS J. 2013 Oct;280(20):4960-9. doi: 10.1111/febs.12482. Epub 2013 Sep 2.

18.

Mitochondrial disulfide relay: redox-regulated protein import into the intermembrane space.

Herrmann JM, Riemer J.

J Biol Chem. 2012 Feb 10;287(7):4426-33. doi: 10.1074/jbc.R111.270678. Epub 2011 Dec 6. Review.

19.

Disulfide bond formation: sulfhydryl oxidase ALR controls mitochondrial biogenesis of human MIA40.

Sztolsztener ME, Brewinska A, Guiard B, Chacinska A.

Traffic. 2013 Mar;14(3):309-20. doi: 10.1111/tra.12030. Epub 2012 Dec 16.

20.

Mitochondrial thiol oxidase Erv1: both shuttle cysteine residues are required for its function with distinct roles.

Ang SK, Zhang M, Lodi T, Lu H.

Biochem J. 2014 Jun 1;460(2):199-210. doi: 10.1042/BJ20131540.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk