Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 111

Similar articles for PubMed (Select 23503662)

1.

SCF(FBXL3) ubiquitin ligase targets cryptochromes at their cofactor pocket.

Xing W, Busino L, Hinds TR, Marionni ST, Saifee NH, Bush MF, Pagano M, Zheng N.

Nature. 2013 Apr 4;496(7443):64-8. doi: 10.1038/nature11964. Epub 2013 Mar 17.

2.

Substrate binding promotes formation of the Skp1-Cul1-Fbxl3 (SCF(Fbxl3)) protein complex.

Yumimoto K, Muneoka T, Tsuboi T, Nakayama KI.

J Biol Chem. 2013 Nov 8;288(45):32766-76. doi: 10.1074/jbc.M113.511303. Epub 2013 Sep 30.

3.

SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins.

Busino L, Bassermann F, Maiolica A, Lee C, Nolan PM, Godinho SI, Draetta GF, Pagano M.

Science. 2007 May 11;316(5826):900-4. Epub 2007 Apr 26.

4.

Crystal structure of mammalian cryptochrome in complex with a small molecule competitor of its ubiquitin ligase.

Nangle S, Xing W, Zheng N.

Cell Res. 2013 Dec;23(12):1417-9. doi: 10.1038/cr.2013.136. Epub 2013 Oct 1. No abstract available.

5.

Functional motifs in the (6-4) photolyase crystal structure make a comparative framework for DNA repair photolyases and clock cryptochromes.

Hitomi K, DiTacchio L, Arvai AS, Yamamoto J, Kim ST, Todo T, Tainer JA, Iwai S, Panda S, Getzoff ED.

Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):6962-7. doi: 10.1073/pnas.0809180106. Epub 2009 Apr 9.

6.

Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana.

Brautigam CA, Smith BS, Ma Z, Palnitkar M, Tomchick DR, Machius M, Deisenhofer J.

Proc Natl Acad Sci U S A. 2004 Aug 17;101(33):12142-7. Epub 2004 Aug 6.

7.

Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm.

Yoo SH, Mohawk JA, Siepka SM, Shan Y, Huh SK, Hong HK, Kornblum I, Kumar V, Koike N, Xu M, Nussbaum J, Liu X, Chen Z, Chen ZJ, Green CB, Takahashi JS.

Cell. 2013 Feb 28;152(5):1091-105. doi: 10.1016/j.cell.2013.01.055.

8.

Kinetic stability of the flavin semiquinone in photolyase and cryptochrome-DASH.

Damiani MJ, Yalloway GN, Lu J, McLeod NR, O'Neill MA.

Biochemistry. 2009 Dec 8;48(48):11399-411. doi: 10.1021/bi901371s.

PMID:
19888752
9.

Structure of full-length Drosophila cryptochrome.

Zoltowski BD, Vaidya AT, Top D, Widom J, Young MW, Crane BR.

Nature. 2011 Nov 13;480(7377):396-9. doi: 10.1038/nature10618. Erratum in: Nature. 2013 Apr 11;496(7444):252.

10.

Crystal structure of cryptochrome 3 from Arabidopsis thaliana and its implications for photolyase activity.

Huang Y, Baxter R, Smith BS, Partch CL, Colbert CL, Deisenhofer J.

Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17701-6. Epub 2006 Nov 13.

11.

Genetics and neurobiology of circadian clocks in mammals.

Siepka SM, Yoo SH, Park J, Lee C, Takahashi JS.

Cold Spring Harb Symp Quant Biol. 2007;72:251-9. doi: 10.1101/sqb.2007.72.052. Review.

12.

FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes.

Hirano A, Yumimoto K, Tsunematsu R, Matsumoto M, Oyama M, Kozuka-Hata H, Nakagawa T, Lanjakornsiripan D, Nakayama KI, Fukada Y.

Cell. 2013 Feb 28;152(5):1106-18. doi: 10.1016/j.cell.2013.01.054.

13.

Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation.

Schmalen I, Reischl S, Wallach T, Klemz R, Grudziecki A, Prabu JR, Benda C, Kramer A, Wolf E.

Cell. 2014 May 22;157(5):1203-15. doi: 10.1016/j.cell.2014.03.057.

PMID:
24855952
14.

Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression.

Siepka SM, Yoo SH, Park J, Song W, Kumar V, Hu Y, Lee C, Takahashi JS.

Cell. 2007 Jun 1;129(5):1011-23. Epub 2007 Apr 26.

15.

Regulation of neddylation and deneddylation of cullin1 in SCFSkp2 ubiquitin ligase by F-box protein and substrate.

Bornstein G, Ganoth D, Hershko A.

Proc Natl Acad Sci U S A. 2006 Aug 1;103(31):11515-20. Epub 2006 Jul 21.

16.

Distinct and separable roles for endogenous CRY1 and CRY2 within the circadian molecular clockwork of the suprachiasmatic nucleus, as revealed by the Fbxl3(Afh) mutation.

Anand SN, Maywood ES, Chesham JE, Joynson G, Banks GT, Hastings MH, Nolan PM.

J Neurosci. 2013 Apr 24;33(17):7145-53. doi: 10.1523/JNEUROSCI.4950-12.2013.

17.

Structural basis of dimerization-dependent ubiquitination by the SCF(Fbx4) ubiquitin ligase.

Li Y, Hao B.

J Biol Chem. 2010 Apr 30;285(18):13896-906. doi: 10.1074/jbc.M110.111518. Epub 2010 Feb 24.

18.

Implication of the F-Box Protein FBXL21 in circadian pacemaker function in mammals.

Dardente H, Mendoza J, Fustin JM, Challet E, Hazlerigg DG.

PLoS One. 2008;3(10):e3530. doi: 10.1371/journal.pone.0003530. Epub 2008 Oct 27.

19.

Molecular analysis of zebrafish photolyase/cryptochrome family: two types of cryptochromes present in zebrafish.

Kobayashi Y, Ishikawa T, Hirayama J, Daiyasu H, Kanai S, Toh H, Fukuda I, Tsujimura T, Terada N, Kamei Y, Yuba S, Iwai S, Todo T.

Genes Cells. 2000 Sep;5(9):725-38.

PMID:
10971654
20.

Spatiotemporal separation of PER and CRY posttranslational regulation in the mammalian circadian clock.

St John PC, Hirota T, Kay SA, Doyle FJ 3rd.

Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):2040-5. doi: 10.1073/pnas.1323618111. Epub 2014 Jan 21.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk