Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 107

1.

Ab initio calculation of valley splitting in monolayer δ-doped phosphorus in silicon.

Drumm DW, Budi A, Per MC, Russo SP, L Hollenberg LC.

Nanoscale Res Lett. 2013 Feb 27;8(1):111. doi: 10.1186/1556-276X-8-111.

PMID:
23445785
[PubMed]
Free PMC Article
2.

Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).

Hafner J.

J Phys Condens Matter. 2008 Feb 13;20(6):060301. doi: 10.1088/0953-8984/20/06/060301. Epub 2008 Jan 24.

PMID:
21693862
[PubMed]
3.

Ab-initio simulations of materials using VASP: Density-functional theory and beyond.

Hafner J.

J Comput Chem. 2008 Oct;29(13):2044-78. doi: 10.1002/jcc.21057.

PMID:
18623101
[PubMed]
4.

Phosphorus δ-doped silicon: mixed-atom pseudopotentials and dopant disorder effects.

Carter DJ, Marks NA, Warschkow O, McKenzie DR.

Nanotechnology. 2011 Feb 11;22(6):065701. doi: 10.1088/0957-4484/22/6/065701. Epub 2011 Jan 7.

PMID:
21212477
[PubMed]
5.

Valley splitting in a silicon quantum device platform.

Miwa JA, Warschkow O, Carter DJ, Marks NA, Mazzola F, Simmons MY, Wells JW.

Nano Lett. 2014 Mar 12;14(3):1515-9. doi: 10.1021/nl404738j. Epub 2014 Mar 3.

PMID:
24571617
[PubMed - in process]
6.

Quantum confinement in phosphorus-doped silicon nanocrystals.

Melnikov DV, Chelikowsky JR.

Phys Rev Lett. 2004 Jan 30;92(4):046802. Epub 2004 Jan 28.

PMID:
14995392
[PubMed]
7.

Scalable fine-grained parallelization of plane-wave-based ab initio molecular dynamics for large supercomputers.

Vadali RV, Shi Y, Kumar S, Kale LV, Tuckerman ME, Martyna GJ.

J Comput Chem. 2004 Dec;25(16):2006-22.

PMID:
15473008
[PubMed]
8.

Modeling bulk and surface Pt using the "Gaussian and plane wave" density functional theory formalism: validation and comparison to k-point plane wave calculations.

Santarossa G, Vargas A, Iannuzzi M, Pignedoli CA, Passerone D, Baiker A.

J Chem Phys. 2008 Dec 21;129(23):234703. doi: 10.1063/1.3037227.

PMID:
19102548
[PubMed]
9.

Ab initio electronic properties of dual phosphorus monolayers in silicon.

Drumm DW, Per MC, Budi A, Hollenberg LC, Russo SP.

Nanoscale Res Lett. 2014 Aug 28;9(1):443. doi: 10.1186/1556-276X-9-443. eCollection 2014.

PMID:
25246862
[PubMed]
Free PMC Article
10.

Structure and dynamics of the hydration shells of the Zn(2+) ion from ab initio molecular dynamics and combined ab initio and classical molecular dynamics simulations.

Cauët E, Bogatko S, Weare JH, Fulton JL, Schenter GK, Bylaska EJ.

J Chem Phys. 2010 May 21;132(19):194502. doi: 10.1063/1.3421542.

PMID:
20499974
[PubMed - indexed for MEDLINE]
11.

Full-dimensional quantum calculations of ground-state tunneling splitting of malonaldehyde using an accurate ab initio potential energy surface.

Wang Y, Braams BJ, Bowman JM, Carter S, Tew DP.

J Chem Phys. 2008 Jun 14;128(22):224314. doi: 10.1063/1.2937732.

PMID:
18554020
[PubMed]
12.

Ab initio, density functional theory, and semi-empirical calculations.

Johansson MP, Kaila VR, Sundholm D.

Methods Mol Biol. 2013;924:3-27. doi: 10.1007/978-1-62703-017-5_1.

PMID:
23034743
[PubMed - indexed for MEDLINE]
13.

Benchmark density functional theory calculations for nanoscale conductance.

Strange M, Kristensen IS, Thygesen KS, Jacobsen KW.

J Chem Phys. 2008 Mar 21;128(11):114714. doi: 10.1063/1.2839275.

PMID:
18361608
[PubMed]
14.

Comparing ab initio density-functional and wave function theories: the impact of correlation on the electronic density and the role of the correlation potential.

Grabowski I, Teale AM, Śmiga S, Bartlett RJ.

J Chem Phys. 2011 Sep 21;135(11):114111. doi: 10.1063/1.3636114.

PMID:
21950854
[PubMed]
15.

Determining the electronic confinement of a subsurface metallic state.

Mazzola F, Edmonds MT, Høydalsvik K, Carter DJ, Marks NA, Cowie BC, Thomsen L, Miwa J, Simmons MY, Wells JW.

ACS Nano. 2014 Oct 28;8(10):10223-8. doi: 10.1021/nn5045239. Epub 2014 Oct 3.

PMID:
25243326
[PubMed - in process]
16.

Theoretical analysis of the spin Hamiltonian parameters in Co(II)S4 complexes, using density functional theory and correlated ab initio methods.

Maganas D, Sottini S, Kyritsis P, Groenen EJ, Neese F.

Inorg Chem. 2011 Sep 19;50(18):8741-54. doi: 10.1021/ic200299y. Epub 2011 Aug 17.

PMID:
21848258
[PubMed - indexed for MEDLINE]
17.

Electronic coupling matrix elements from charge constrained density functional theory calculations using a plane wave basis set.

Oberhofer H, Blumberger J.

J Chem Phys. 2010 Dec 28;133(24):244105. doi: 10.1063/1.3507878.

PMID:
21197974
[PubMed]
18.

Investigating magnetostructural correlations in the pseudooctahedral trans-[Ni(II){(OPPh2)(EPPh2)N}2(sol)2] complexes (E = S, Se; sol = DMF, THF) by magnetometry, HFEPR, and ab initio quantum chemistry.

Maganas D, Krzystek J, Ferentinos E, Whyte AM, Robertson N, Psycharis V, Terzis A, Neese F, Kyritsis P.

Inorg Chem. 2012 Jul 2;51(13):7218-31. doi: 10.1021/ic300453y. Epub 2012 Jun 14.

PMID:
22697407
[PubMed - indexed for MEDLINE]
19.

Anharmonic force field and vibrational dynamics of CH2F2 up to 5000 cm(-1) studied by Fourier transform infrared spectroscopy and state-of-the-art ab initio calculations.

Tasinato N, Regini G, Stoppa P, Pietropolli Charmet A, Gambi A.

J Chem Phys. 2012 Jun 7;136(21):214302. doi: 10.1063/1.4720502.

PMID:
22697538
[PubMed - indexed for MEDLINE]
20.

A multiconfigurational ab initio study of the zero-field splitting in the di- and trivalent hexaquo-chromium complexes.

Liakos DG, Ganyushin D, Neese F.

Inorg Chem. 2009 Nov 16;48(22):10572-80. doi: 10.1021/ic901063y.

PMID:
19845329
[PubMed]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk