Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 78

1.

Multimodal actions of neural stem cells in a mouse model of ALS: a meta-analysis.

Teng YD, Benn SC, Kalkanis SN, Shefner JM, Onario RC, Cheng B, Lachyankar MB, Marconi M, Li J, Yu D, Han I, Maragakis NJ, Lládo J, Erkmen K, Redmond DE Jr, Sidman RL, Przedborski S, Rothstein JD, Brown RH Jr, Snyder EY.

Sci Transl Med. 2012 Dec 19;4(165):165ra164. doi: 10.1126/scitranslmed.3004579.

PMID:
23253611
2.

Minimally invasive transplantation of iPSC-derived ALDHhiSSCloVLA4+ neural stem cells effectively improves the phenotype of an amyotrophic lateral sclerosis model.

Nizzardo M, Simone C, Rizzo F, Ruggieri M, Salani S, Riboldi G, Faravelli I, Zanetta C, Bresolin N, Comi GP, Corti S.

Hum Mol Genet. 2014 Jan 15;23(2):342-54. doi: 10.1093/hmg/ddt425. Epub 2013 Sep 4.

3.

Neural induction with neurogenin 1 enhances the therapeutic potential of mesenchymal stem cells in an amyotrophic lateral sclerosis mouse model.

Chan-Il C, Young-Don L, Heejaung K, Kim SH, Suh-Kim H, Kim SS.

Cell Transplant. 2013;22(5):855-70.

PMID:
22472631
4.

Neural stem cells LewisX+ CXCR4+ modify disease progression in an amyotrophic lateral sclerosis model.

Corti S, Locatelli F, Papadimitriou D, Del Bo R, Nizzardo M, Nardini M, Donadoni C, Salani S, Fortunato F, Strazzer S, Bresolin N, Comi GP.

Brain. 2007 May;130(Pt 5):1289-305. Epub 2007 Apr 17.

5.

Human mesenchymal stromal cells ameliorate the phenotype of SOD1-G93A ALS mice.

Zhao CP, Zhang C, Zhou SN, Xie YM, Wang YH, Huang H, Shang YC, Li WY, Zhou C, Yu MJ, Feng SW.

Cytotherapy. 2007;9(5):414-26.

PMID:
17786603
6.

Functional neural stem cell isolation from brains of adult mutant SOD1 (SOD1(G93A)) transgenic amyotrophic lateral sclerosis (ALS) mice.

Lee JC, Jin Y, Jin J, Kang BG, Nam DH, Joo KM, Cha CI.

Neurol Res. 2011 Jan;33(1):33-7. doi: 10.1179/016164110X12807570509899. Epub 2010 Aug 31.

PMID:
20810028
7.
8.

Distribution, differentiation, and survival of intravenously administered neural stem cells in a rat model of amyotrophic lateral sclerosis.

Mitrecić D, Nicaise C, Gajović S, Pochet R.

Cell Transplant. 2010;19(5):537-48. doi: 10.3727/096368910X498269. Epub 2010 Mar 26.

PMID:
20350352
9.

In vivo quantification of spinal and bulbar motor neuron degeneration in the G93A-SOD1 transgenic mouse model of ALS by T2 relaxation time and apparent diffusion coefficient.

Niessen HG, Angenstein F, Sander K, Kunz WS, Teuchert M, Ludolph AC, Heinze HJ, Scheich H, Vielhaber S.

Exp Neurol. 2006 Oct;201(2):293-300. Epub 2006 Jun 5.

PMID:
16740261
10.
11.

Redox system expression in the motor neurons in amyotrophic lateral sclerosis (ALS): immunohistochemical studies on sporadic ALS, superoxide dismutase 1 (SOD1)-mutated familial ALS, and SOD1-mutated ALS animal models.

Kato S, Kato M, Abe Y, Matsumura T, Nishino T, Aoki M, Itoyama Y, Asayama K, Awaya A, Hirano A, Ohama E.

Acta Neuropathol. 2005 Aug;110(2):101-12. Epub 2005 Jun 28.

PMID:
15983830
12.
13.

Bromocriptine methylate suppresses glial inflammation and moderates disease progression in a mouse model of amyotrophic lateral sclerosis.

Tanaka K, Kanno T, Yanagisawa Y, Yasutake K, Hadano S, Yoshii F, Ikeda JE.

Exp Neurol. 2011 Nov;232(1):41-52. doi: 10.1016/j.expneurol.2011.08.001. Epub 2011 Aug 16.

PMID:
21867702
14.

Vacuolization correlates with spin-spin relaxation time in motor brainstem nuclei and behavioural tests in the transgenic G93A-SOD1 mouse model of ALS.

Bucher S, Braunstein KE, Niessen HG, Kaulisch T, Neumaier M, Boeckers TM, Stiller D, Ludolph AC.

Eur J Neurosci. 2007 Oct;26(7):1895-901. Epub 2007 Sep 14.

PMID:
17868365
15.

A novel mouse model with impaired dynein/dynactin function develops amyotrophic lateral sclerosis (ALS)-like features in motor neurons and improves lifespan in SOD1-ALS mice.

Teuling E, van Dis V, Wulf PS, Haasdijk ED, Akhmanova A, Hoogenraad CC, Jaarsma D.

Hum Mol Genet. 2008 Sep 15;17(18):2849-62. doi: 10.1093/hmg/ddn182. Epub 2008 Jun 25.

16.

Early motor and electrophysiological changes in transgenic mouse model of amyotrophic lateral sclerosis and gender differences on clinical outcome.

Alves CJ, de Santana LP, dos Santos AJ, de Oliveira GP, Duobles T, Scorisa JM, Martins RS, Maximino JR, Chadi G.

Brain Res. 2011 Jun 7;1394:90-104. doi: 10.1016/j.brainres.2011.02.060. Epub 2011 Feb 24.

17.

Growth factor-expressing human neural progenitor cell grafts protect motor neurons but do not ameliorate motor performance and survival in ALS mice.

Park S, Kim HT, Yun S, Kim IS, Lee J, Lee IS, Park KI.

Exp Mol Med. 2009 Jul 31;41(7):487-500. doi: 10.3858/emm.2009.41.7.054.

18.

Wild-type bone marrow cells ameliorate the phenotype of SOD1-G93A ALS mice and contribute to CNS, heart and skeletal muscle tissues.

Corti S, Locatelli F, Donadoni C, Guglieri M, Papadimitriou D, Strazzer S, Del Bo R, Comi GP.

Brain. 2004 Nov;127(Pt 11):2518-32. Epub 2004 Oct 6.

19.

Amyloid precursor protein (APP) contributes to pathology in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis.

Bryson JB, Hobbs C, Parsons MJ, Bosch KD, Pandraud A, Walsh FS, Doherty P, Greensmith L.

Hum Mol Genet. 2012 Sep 1;21(17):3871-82. doi: 10.1093/hmg/dds215. Epub 2012 Jun 7.

20.

Sensory involvement in the SOD1-G93A mouse model of amyotrophic lateral sclerosis.

Guo YS, Wu DX, Wu HR, Wu SY, Yang C, Li B, Bu H, Zhang YS, Li CY.

Exp Mol Med. 2009 Mar 31;41(3):140-50. doi: 10.3858/emm.2009.41.3.017.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk