Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 94


Structural basis of biological nitrile reduction.

Chikwana VM, Stec B, Lee BW, de Crécy-Lagard V, Iwata-Reuyl D, Swairjo MA.

J Biol Chem. 2012 Aug 31;287(36):30560-70. doi: 10.1074/jbc.M112.388538. Epub 2012 Jul 11.


Mechanistic studies of Bacillus subtilis QueF, the nitrile oxidoreductase involved in queuosine biosynthesis.

Lee BW, Van Lanen SG, Iwata-Reuyl D.

Biochemistry. 2007 Nov 6;46(44):12844-54. Epub 2007 Oct 11.


Crystallization and preliminary X-ray characterization of the nitrile reductase QueF: a queuosine-biosynthesis enzyme.

Swairjo MA, Reddy RR, Lee B, Van Lanen SG, Brown S, de Crécy-Lagard V, Iwata-Reuyl D, Schimmel P.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2005 Oct 1;61(Pt 10):945-8. Epub 2005 Sep 30.


High-resolution structure of the nitrile reductase QueF combined with molecular simulations provide insight into enzyme mechanism.

Kim Y, Zhou M, Moy S, Morales J, Cunningham MA, Joachimiak A.

J Mol Biol. 2010 Nov 19;404(1):127-37. doi: 10.1016/j.jmb.2010.09.042. Epub 2010 Sep 25.


Targeting the substrate binding site of E. coli nitrile reductase QueF by modeling, substrate and enzyme engineering.

Wilding B, Winkler M, Petschacher B, Kratzer R, Egger S, Steinkellner G, Lyskowski A, Nidetzky B, Gruber K, Klempier N.

Chemistry. 2013 May 27;19(22):7007-12. doi: 10.1002/chem.201300163. Epub 2013 Apr 17.


Expression and characterization of the nitrile reductase queF from E. coli.

Moeller K, Nguyen GS, Hollmann F, Hanefeld U.

Enzyme Microb Technol. 2013 Mar 5;52(3):129-33. doi: 10.1016/j.enzmictec.2012.12.003. Epub 2012 Dec 14.


From cyclohydrolase to oxidoreductase: discovery of nitrile reductase activity in a common fold.

Van Lanen SG, Reader JS, Swairjo MA, de Crécy-Lagard V, Lee B, Iwata-Reuyl D.

Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4264-9. Epub 2005 Mar 14.


Structures of Mycobacterium tuberculosis 1-deoxy-D-xylulose-5-phosphate reductoisomerase provide new insights into catalysis.

Henriksson LM, Unge T, Carlsson J, Aqvist J, Mowbray SL, Jones TA.

J Biol Chem. 2007 Jul 6;282(27):19905-16. Epub 2007 May 9.


Insights into folate/FAD-dependent tRNA methyltransferase mechanism: role of two highly conserved cysteines in catalysis.

Hamdane D, Argentini M, Cornu D, Myllykallio H, Skouloubris S, Hui-Bon-Hoa G, Golinelli-Pimpaneau B.

J Biol Chem. 2011 Oct 21;286(42):36268-80. doi: 10.1074/jbc.M111.256966. Epub 2011 Aug 16.


Porcine recombinant dihydropyrimidine dehydrogenase: comparison of the spectroscopic and catalytic properties of the wild-type and C671A mutant enzymes.

Rosenbaum K, Jahnke K, Curti B, Hagen WR, Schnackerz KD, Vanoni MA.

Biochemistry. 1998 Dec 15;37(50):17598-609.


Spectroscopic and kinetic studies of Y114F and W116F mutants of Me2SO reductase from Rhodobacter capsulatus.

Cobb N, Hemann C, Polsinelli GA, Ridge JP, McEwan AG, Hille R.

J Biol Chem. 2007 Dec 7;282(49):35519-29. Epub 2007 Oct 5.


Role of active site residues and solvent in proton transfer and the modulation of flavin reduction potential in bacterial morphinone reductase.

Messiha HL, Bruce NC, Sattelle BM, Sutcliffe MJ, Munro AW, Scrutton NS.

J Biol Chem. 2005 Jul 22;280(29):27103-10. Epub 2005 May 19.


Structural insights into vinyl reduction regiospecificity of phycocyanobilin:ferredoxin oxidoreductase (PcyA).

Hagiwara Y, Sugishima M, Khawn H, Kinoshita H, Inomata K, Shang L, Lagarias JC, Takahashi Y, Fukuyama K.

J Biol Chem. 2010 Jan 8;285(2):1000-7. doi: 10.1074/jbc.M109.055632. Epub 2009 Nov 2.


Structural and mechanistic studies on ThiO, a glycine oxidase essential for thiamin biosynthesis in Bacillus subtilis.

Settembre EC, Dorrestein PC, Park JH, Augustine AM, Begley TP, Ealick SE.

Biochemistry. 2003 Mar 18;42(10):2971-81.


Complex structure of Bacillus subtilis RibG: the reduction mechanism during riboflavin biosynthesis.

Chen SC, Lin YH, Yu HC, Liaw SH.

J Biol Chem. 2009 Jan 16;284(3):1725-31. doi: 10.1074/jbc.M805820200. Epub 2008 Nov 5.


The role of Glu498 in the dioxygen reactivity of CotA-laccase from Bacillus subtilis.

Chen Z, Durão P, Silva CS, Pereira MM, Todorovic S, Hildebrandt P, Bento I, Lindley PF, Martins LO.

Dalton Trans. 2010 Mar 21;39(11):2875-82. doi: 10.1039/b922734b. Epub 2010 Feb 5.


Reversible conformational switch revealed by the redox structures of Bacillus subtilis thiol peroxidase.

Lu J, Yang F, Li Y, Zhang X, Xia B, Jin C.

Biochem Biophys Res Commun. 2008 Aug 29;373(3):414-8. doi: 10.1016/j.bbrc.2008.06.051. Epub 2008 Jun 25.


The crystal structure and mechanism of an unusual oxidoreductase, GilR, involved in gilvocarcin V biosynthesis.

Noinaj N, Bosserman MA, Schickli MA, Piszczek G, Kharel MK, Pahari P, Buchanan SK, Rohr J.

J Biol Chem. 2011 Jul 1;286(26):23533-43. doi: 10.1074/jbc.M111.247833. Epub 2011 May 10.


Cysteine as a modulator residue in the active site of xenobiotic reductase A: a structural, thermodynamic and kinetic study.

Spiegelhauer O, Mende S, Dickert F, Knauer SH, Ullmann GM, Dobbek H.

J Mol Biol. 2010 Apr 23;398(1):66-82. doi: 10.1016/j.jmb.2010.02.044. Epub 2010 Mar 3.


Active site of dihydroorotate dehydrogenase A from Lactococcus lactis investigated by chemical modification and mutagenesis.

Björnberg O, Rowland P, Larsen S, Jensen KF.

Biochemistry. 1997 Dec 23;36(51):16197-205.

Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk