Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 99

Similar articles for PubMed (Select 22660039)

1.

A spectrally constrained dual-band normalization technique for protoporphyrin IX quantification in fluorescence-guided surgery.

Valdés PA, Leblond F, Kim A, Wilson BC, Paulsen KD, Roberts DW.

Opt Lett. 2012 Jun 1;37(11):1817-9. doi: 10.1364/OL.37.001817.

2.

System and methods for wide-field quantitative fluorescence imaging during neurosurgery.

Valdes PA, Jacobs VL, Wilson BC, Leblond F, Roberts DW, Paulsen KD.

Opt Lett. 2013 Aug 1;38(15):2786-8. doi: 10.1364/OL.38.002786.

PMID:
23903142
3.

Spatial frequency domain tomography of protoporphyrin IX fluorescence in preclinical glioma models.

Konecky SD, Owen CM, Rice T, Valdés PA, Kolste K, Wilson BC, Leblond F, Roberts DW, Paulsen KD, Tromberg BJ.

J Biomed Opt. 2012 May;17(5):056008. doi: 10.1117/1.JBO.17.5.056008.

4.

Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements.

Kim A, Khurana M, Moriyama Y, Wilson BC.

J Biomed Opt. 2010 Nov-Dec;15(6):067006. doi: 10.1117/1.3523616.

5.

Gadolinium- and 5-aminolevulinic acid-induced protoporphyrin IX levels in human gliomas: an ex vivo quantitative study to correlate protoporphyrin IX levels and blood-brain barrier breakdown.

Valdés PA, Moses ZB, Kim A, Belden CJ, Wilson BC, Paulsen KD, Roberts DW, Harris BT.

J Neuropathol Exp Neurol. 2012 Sep;71(9):806-13. doi: 10.1097/NEN.0b013e31826775a1.

6.

Dual-channel red/blue fluorescence dosimetry with broadband reflectance spectroscopic correction measures protoporphyrin IX production during photodynamic therapy of actinic keratosis.

Kanick SC, Davis SC, Zhao Y, Hasan T, Maytin EV, Pogue BW, Chapman MS.

J Biomed Opt. 2014;19(7):75002. doi: 10.1117/1.JBO.19.7.075002.

PMID:
24996661
7.

Quantitative fluorescence imaging of protoporphyrin IX through determination of tissue optical properties in the spatial frequency domain.

Saager RB, Cuccia DJ, Saggese S, Kelly KM, Durkin AJ.

J Biomed Opt. 2011 Dec;16(12):126013. doi: 10.1117/1.3665440.

8.

Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between δ-aminolevulinic acid-induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. Clinical article.

Roberts DW, Valdés PA, Harris BT, Fontaine KM, Hartov A, Fan X, Ji S, Lollis SS, Pogue BW, Leblond F, Tosteson TD, Wilson BC, Paulsen KD.

J Neurosurg. 2011 Mar;114(3):595-603. doi: 10.3171/2010.2.JNS091322. Epub 2010 Apr 9.

9.

Auditory alert system for fluorescence-guided resection of gliomas.

Utsuki S, Oka H, Miyajima Y, Shimizu S, Suzuki S, Fujii K.

Neurol Med Chir (Tokyo). 2008 Feb;48(2):95-7; discussion 97-8.

10.

Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery.

Valdés PA, Kim A, Leblond F, Conde OM, Harris BT, Paulsen KD, Wilson BC, Roberts DW.

J Biomed Opt. 2011 Nov;16(11):116007. doi: 10.1117/1.3646916.

11.

Estimation of brain deformation for volumetric image updating in protoporphyrin IX fluorescence-guided resection.

Valdés PA, Fan X, Ji S, Harris BT, Paulsen KD, Roberts DW.

Stereotact Funct Neurosurg. 2010;88(1):1-10. doi: 10.1159/000258143. Epub 2009 Nov 12.

12.

White light-informed optical properties improve ultrasound-guided fluorescence tomography of photoactive protoporphyrin IX.

Flynn BP, DSouza AV, Kanick SC, Davis SC, Pogue BW.

J Biomed Opt. 2013 Apr;18(4):046008. doi: 10.1117/1.JBO.18.4.046008.

13.

5-Aminolevulinic acid-induced protoporphyrin IX levels in tissue of human malignant brain tumors.

Johansson A, Palte G, Schnell O, Tonn JC, Herms J, Stepp H.

Photochem Photobiol. 2010 Nov-Dec;86(6):1373-8. doi: 10.1111/j.1751-1097.2010.00799.x. Epub 2010 Sep 20.

PMID:
20854414
14.

Fluorescence-guided resection of metastatic brain tumors using a 5-aminolevulinic acid-induced protoporphyrin IX: pathological study.

Utsuki S, Miyoshi N, Oka H, Miyajima Y, Shimizu S, Suzuki S, Fujii K.

Brain Tumor Pathol. 2007;24(2):53-5. Epub 2007 Nov 28.

PMID:
18095131
15.

Aminolevulinic acid (ALA)-protoporphyrin IX fluorescence guided tumour resection. Part 1: Clinical, radiological and pathological studies.

Colditz MJ, Jeffree RL.

J Clin Neurosci. 2012 Nov;19(11):1471-4. doi: 10.1016/j.jocn.2012.03.009. Epub 2012 Sep 5. Review.

PMID:
22959448
16.

Dual-wavelength excitation for fluorescence-based quantification of zinc protoporphyrin IX and protoporphyrin IX in whole blood.

Hennig G, Gruber C, Vogeser M, Stepp H, Dittmar S, Sroka R, Brittenham GM.

J Biophotonics. 2014 Jul;7(7):514-24. doi: 10.1002/jbio.201200228. Epub 2013 Mar 1.

PMID:
23450826
17.

Lack of selectivity of protoporphyrin IX fluorescence for basal cell carcinoma after topical application of 5-aminolevulinic acid: implications for photodynamic treatment.

Martin A, Tope WD, Grevelink JM, Starr JC, Fewkes JL, Flotte TJ, Deutsch TF, Anderson RR.

Arch Dermatol Res. 1995;287(7):665-74.

PMID:
8534131
18.

Aminolevulinic acid (ALA)-protoporphyrin IX fluorescence guided tumour resection. Part 2: theoretical, biochemical and practical aspects.

Colditz MJ, Leyen Kv, Jeffree RL.

J Clin Neurosci. 2012 Dec;19(12):1611-6. doi: 10.1016/j.jocn.2012.03.013. Epub 2012 Oct 9. Review.

PMID:
23059058
20.

Determination of time-dependent protoporphyrin IX concentration for photodynamic therapy dosimetry in a mice colon tumor model using fluorescence spectroscopy.

Naghavi N, Baygi MH, Sazgarnia A.

Appl Spectrosc. 2010 Dec;64(12):1350-4. doi: 10.1366/000370210793561682.

PMID:
21144152
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk