Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 155

Similar articles for PubMed (Select 22093065)

1.

Identification of RCN1 and RSA3 as ethanol-tolerant genes in Saccharomyces cerevisiae using a high copy barcoded library.

Anderson MJ, Barker SL, Boone C, Measday V.

FEMS Yeast Res. 2012 Feb;12(1):48-60. doi: 10.1111/j.1567-1364.2011.00762.x. Epub 2011 Dec 8.

2.

Overexpression of PDE2 or SSD1-V in Saccharomyces cerevisiae W303-1A strain renders it ethanol-tolerant.

Avrahami-Moyal L, Braun S, Engelberg D.

FEMS Yeast Res. 2012 Jun;12(4):447-55. doi: 10.1111/j.1567-1364.2012.00795.x. Epub 2012 Mar 29.

3.

Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance.

Yang J, Bae JY, Lee YM, Kwon H, Moon HY, Kang HA, Yee SB, Kim W, Choi W.

Biotechnol Bioeng. 2011 Aug;108(8):1776-87. doi: 10.1002/bit.23141. Epub 2011 Apr 3.

PMID:
21437883
4.

Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis.

Hirasawa T, Yoshikawa K, Nakakura Y, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S.

J Biotechnol. 2007 Aug 1;131(1):34-44. Epub 2007 May 24.

PMID:
17604866
5.

Identification of gene targets eliciting improved alcohol tolerance in Saccharomyces cerevisiae through inverse metabolic engineering.

Hong ME, Lee KS, Yu BJ, Sung YJ, Park SM, Koo HM, Kweon DH, Park JC, Jin YS.

J Biotechnol. 2010 Aug 20;149(1-2):52-9. doi: 10.1016/j.jbiotec.2010.06.006. Epub 2010 Jun 25.

PMID:
20600383
6.

Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae.

Endo A, Nakamura T, Shima J.

FEMS Microbiol Lett. 2009 Oct;299(1):95-9. doi: 10.1111/j.1574-6968.2009.01733.x. Epub 2009 Jul 22.

7.

Transcriptome analysis identifies genes involved in ethanol response of Saccharomyces cerevisiae in Agave tequilana juice.

Ramirez-Córdova J, Drnevich J, Madrigal-Pulido JA, Arrizon J, Allen K, Martínez-Velázquez M, Alvarez-Maya I.

Antonie Van Leeuwenhoek. 2012 Aug;102(2):247-55. doi: 10.1007/s10482-012-9733-z. Epub 2012 Apr 26.

PMID:
22535436
8.

Identification of novel genes responsible for ethanol and/or thermotolerance by transposon mutagenesis in Saccharomyces cerevisiae.

Kim HS, Kim NR, Yang J, Choi W.

Appl Microbiol Biotechnol. 2011 Aug;91(4):1159-72. doi: 10.1007/s00253-011-3298-z. Epub 2011 May 10.

PMID:
21556919
9.

[Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae].

Qu N, He XP, Guo XN, Liu N, Zhang BR.

Wei Sheng Wu Xue Bao. 2006 Feb;46(1):38-42. Chinese.

PMID:
16579462
10.

Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid.

Mira NP, Palma M, Guerreiro JF, Sá-Correia I.

Microb Cell Fact. 2010 Oct 25;9:79. doi: 10.1186/1475-2859-9-79.

11.

[Improving ethanol tolerance of Saccharomyces cerevisiae industrial strain by directed evolution of SPT3].

Zhao X, Jiang R, Li N, Yang Q, Bai F.

Sheng Wu Gong Cheng Xue Bao. 2010 Feb;26(2):159-64. Chinese.

PMID:
20432932
12.

Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.

Pérez-Torrado R, Bruno-Bárcena JM, Matallana E.

Appl Environ Microbiol. 2005 Nov;71(11):6831-7.

13.

Critical role of RPI1 in the stress tolerance of yeast during ethanolic fermentation.

Puria R, Mannan MA, Chopra-Dewasthaly R, Ganesan K.

FEMS Yeast Res. 2009 Dec;9(8):1161-71. doi: 10.1111/j.1567-1364.2009.00549.x. Epub 2009 Jul 7.

14.

Increased ethanol production from glycerol by Saccharomyces cerevisiae strains with enhanced stress tolerance from the overexpression of SAGA complex components.

Yu KO, Jung J, Ramzi AB, Choe SH, Kim SW, Park C, Han SO.

Enzyme Microb Technol. 2012 Sep 10;51(4):237-43. doi: 10.1016/j.enzmictec.2012.07.003. Epub 2012 Jul 16.

PMID:
22883559
15.

Mechanisms of ethanol tolerance in Saccharomyces cerevisiae.

Ma M, Liu ZL.

Appl Microbiol Biotechnol. 2010 Jul;87(3):829-45. doi: 10.1007/s00253-010-2594-3. Epub 2010 May 13. Review.

PMID:
20464391
16.

Superior thermotolerance of Saccharomyces cerevisiae for efficient bioethanol fermentation can be achieved by overexpression of RSP5 ubiquitin ligase.

Shahsavarani H, Sugiyama M, Kaneko Y, Chuenchit B, Harashima S.

Biotechnol Adv. 2012 Nov-Dec;30(6):1289-300. doi: 10.1016/j.biotechadv.2011.09.002. Epub 2011 Sep 10.

PMID:
21930195
17.
18.

Engineering of the yeast antioxidant enzyme Mpr1 for enhanced activity and stability.

Iinoya K, Kotani T, Sasano Y, Takagi H.

Biotechnol Bioeng. 2009 Jun 1;103(2):341-52. doi: 10.1002/bit.22247.

PMID:
19170243
20.

Analysis of adaptation to high ethanol concentration in Saccharomyces cerevisiae using DNA microarray.

Dinh TN, Nagahisa K, Yoshikawa K, Hirasawa T, Furusawa C, Shimizu H.

Bioprocess Biosyst Eng. 2009 Aug;32(5):681-8. doi: 10.1007/s00449-008-0292-7. Epub 2009 Jan 6.

PMID:
19125301
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk