Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 103

Similar articles for PubMed (Select 21985012)

1.

Resting and active states of the ERK2:HePTP complex.

Francis DM, Różycki B, Tortajada A, Hummer G, Peti W, Page R.

J Am Chem Soc. 2011 Nov 2;133(43):17138-41. doi: 10.1021/ja2075136. Epub 2011 Oct 10.

2.

A kinetic approach for the study of protein phosphatase-catalyzed regulation of protein kinase activity.

Wang ZX, Zhou B, Wang QM, Zhang ZY.

Biochemistry. 2002 Jun 18;41(24):7849-57.

PMID:
12056917
3.

Molecular determinants of substrate recognition in hematopoietic protein-tyrosine phosphatase.

Huang Z, Zhou B, Zhang ZY.

J Biol Chem. 2004 Dec 10;279(50):52150-9. Epub 2004 Oct 4.

4.
5.
6.

Interaction of kinase-interaction-motif protein tyrosine phosphatases with the mitogen-activated protein kinase ERK2.

Francis DM, Koveal D, Tortajada A, Page R, Peti W.

PLoS One. 2014 Mar 17;9(3):e91934. doi: 10.1371/journal.pone.0091934. eCollection 2014.

7.

Haematopoietic protein tyrosine phosphatase (HePTP) phosphorylation by cAMP-dependent protein kinase in T-cells: dynamics and subcellular location.

Nika K, Hyunh H, Williams S, Paul S, Bottini N, Taskén K, Lombroso PJ, Mustelin T.

Biochem J. 2004 Mar 1;378(Pt 2):335-42.

9.

Docking interactions of hematopoietic tyrosine phosphatase with MAP kinases ERK2 and p38α.

Piserchio A, Francis DM, Koveal D, Dalby KN, Page R, Peti W, Ghose R.

Biochemistry. 2012 Oct 16;51(41):8047-9. doi: 10.1021/bi3012725. Epub 2012 Oct 5.

10.
11.

Inhibition of hematopoietic protein tyrosine phosphatase augments and prolongs ERK1/2 and p38 activation.

Sergienko E, Xu J, Liu WH, Dahl R, Critton DA, Su Y, Brown BT, Chan X, Yang L, Bobkova EV, Vasile S, Yuan H, Rascon J, Colayco S, Sidique S, Cosford ND, Chung TD, Mustelin T, Page R, Lombroso PJ, Tautz L.

ACS Chem Biol. 2012 Feb 17;7(2):367-77. doi: 10.1021/cb2004274. Epub 2011 Nov 17.

13.

Mechanism of mitogen-activated protein kinase phosphatase-3 activation by ERK2.

Zhou B, Zhang ZY.

J Biol Chem. 1999 Dec 10;274(50):35526-34.

14.

Solution structure of ERK2 binding domain of MAPK phosphatase MKP-3: structural insights into MKP-3 activation by ERK2.

Farooq A, Chaturvedi G, Mujtaba S, Plotnikova O, Zeng L, Dhalluin C, Ashton R, Zhou MM.

Mol Cell. 2001 Feb;7(2):387-99.

15.

Crystal structure of PTP-SL/PTPBR7 catalytic domain: implications for MAP kinase regulation.

Szedlacsek SE, Aricescu AR, Fulga TA, Renault L, Scheidig AJ.

J Mol Biol. 2001 Aug 17;311(3):557-68.

PMID:
11493009
16.

The specificity of extracellular signal-regulated kinase 2 dephosphorylation by protein phosphatases.

Zhou B, Wang ZX, Zhao Y, Brautigan DL, Zhang ZY.

J Biol Chem. 2002 Aug 30;277(35):31818-25. Epub 2002 Jun 24.

17.

MAP kinase phosphatase 3 (MKP3) interacts with and is phosphorylated by protein kinase CK2alpha.

Castelli M, Camps M, Gillieron C, Leroy D, Arkinstall S, Rommel C, Nichols A.

J Biol Chem. 2004 Oct 22;279(43):44731-9. Epub 2004 Jul 28.

18.

Crosstalk between cAMP-dependent kinase and MAP kinase through a protein tyrosine phosphatase.

Saxena M, Williams S, Taskén K, Mustelin T.

Nat Cell Biol. 1999 Sep;1(5):305-11.

PMID:
10559944
19.

ERK2 shows a restrictive and locally selective mechanism of recognition by its tyrosine phosphatase inactivators not shared by its activator MEK1.

Tárrega C, Ríos P, Cejudo-Marín R, Blanco-Aparicio C, van den Berk L, Schepens J, Hendriks W, Tabernero L, Pulido R.

J Biol Chem. 2005 Nov 11;280(45):37885-94. Epub 2005 Sep 7.

20.

Mapping ERK2-MKP3 binding interfaces by hydrogen/deuterium exchange mass spectrometry.

Zhou B, Zhang J, Liu S, Reddy S, Wang F, Zhang ZY.

J Biol Chem. 2006 Dec 15;281(50):38834-44. Epub 2006 Oct 17.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk