Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 105

1.

Engineered polymer-media interfaces for the long-term self-renewal of human embryonic stem cells.

Irwin EF, Gupta R, Dashti DC, Healy KE.

Biomaterials. 2011 Oct;32(29):6912-9. doi: 10.1016/j.biomaterials.2011.05.058. Epub 2011 Jul 20.

2.

Enhancement of the propagation of human embryonic stem cells by modifications in the gel architecture of PMEDSAH polymer coatings.

Qian X, Villa-Diaz LG, Kumar R, Lahann J, Krebsbach PH.

Biomaterials. 2014 Dec;35(36):9581-90. doi: 10.1016/j.biomaterials.2014.08.015. Epub 2014 Sep 2.

3.

Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells.

Melkoumian Z, Weber JL, Weber DM, Fadeev AG, Zhou Y, Dolley-Sonneville P, Yang J, Qiu L, Priest CA, Shogbon C, Martin AW, Nelson J, West P, Beltzer JP, Pal S, Brandenberger R.

Nat Biotechnol. 2010 Jun;28(6):606-10. doi: 10.1038/nbt.1629. Epub 2010 May 30.

PMID:
20512120
4.

Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions.

Yao S, Chen S, Clark J, Hao E, Beattie GM, Hayek A, Ding S.

Proc Natl Acad Sci U S A. 2006 May 2;103(18):6907-12. Epub 2006 Apr 21.

5.

Microfibrous substrate geometry as a critical trigger for organization, self-renewal, and differentiation of human embryonic stem cells within synthetic 3-dimensional microenvironments.

Carlson AL, Florek CA, Kim JJ, Neubauer T, Moore JC, Cohen RI, Kohn J, Grumet M, Moghe PV.

FASEB J. 2012 Aug;26(8):3240-51. doi: 10.1096/fj.11-192732. Epub 2012 Apr 27.

6.

Serum-free and feeder-free culture conditions for human embryonic stem cells.

Vallier L.

Methods Mol Biol. 2011;690:57-66. doi: 10.1007/978-1-60761-962-8_3.

PMID:
21042984
7.

Feeder-free self-renewal of human embryonic stem cells in 3D porous natural polymer scaffolds.

Li Z, Leung M, Hopper R, Ellenbogen R, Zhang M.

Biomaterials. 2010 Jan;31(3):404-12. doi: 10.1016/j.biomaterials.2009.09.070. Epub 2009 Oct 9.

PMID:
19819007
8.

Synthetic surfaces for human embryonic stem cell culture.

Kolhar P, Kotamraju VR, Hikita ST, Clegg DO, Ruoslahti E.

J Biotechnol. 2010 Apr 1;146(3):143-6. doi: 10.1016/j.jbiotec.2010.01.016. Epub 2010 Feb 2.

PMID:
20132848
9.

Synthetic polymer coatings for long-term growth of human embryonic stem cells.

Villa-Diaz LG, Nandivada H, Ding J, Nogueira-de-Souza NC, Krebsbach PH, O'Shea KS, Lahann J, Smith GD.

Nat Biotechnol. 2010 Jun;28(6):581-3. doi: 10.1038/nbt.1631. Epub 2010 May 30.

10.

Hydrogels as artificial matrices for human embryonic stem cell self-renewal.

Li YJ, Chung EH, Rodriguez RT, Firpo MT, Healy KE.

J Biomed Mater Res A. 2006 Oct;79(1):1-5.

PMID:
16741988
11.

[Self-renewal signaling pathway and culture system in vitro of embryonic stem cells].

Zhu J, Wang Y, Diao Y.

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2007 Feb;21(2):188-93. Review. Chinese.

PMID:
17357470
12.

Defining a threshold surface density of vitronectin for the stable expansion of human embryonic stem cells.

Yap LY, Li J, Phang IY, Ong LT, Ow JZ, Goh JC, Nurcombe V, Hobley J, Choo AB, Oh SK, Cool SM, Birch WR.

Tissue Eng Part C Methods. 2011 Feb;17(2):193-207. doi: 10.1089/ten.TEC.2010.0328. Epub 2010 Oct 7.

PMID:
20726687
13.

Alginate microcapsule for propagation and directed differentiation of hESCs to definitive endoderm.

Chayosumrit M, Tuch B, Sidhu K.

Biomaterials. 2010 Jan;31(3):505-14. doi: 10.1016/j.biomaterials.2009.09.071. Epub 2009 Oct 14.

PMID:
19833385
14.

A defined and xeno-free culture method enabling the establishment of clinical-grade human embryonic, induced pluripotent and adipose stem cells.

Rajala K, Lindroos B, Hussein SM, Lappalainen RS, Pekkanen-Mattila M, Inzunza J, Rozell B, Miettinen S, Narkilahti S, Kerkelä E, Aalto-Setälä K, Otonkoski T, Suuronen R, Hovatta O, Skottman H.

PLoS One. 2010 Apr 19;5(4):e10246. doi: 10.1371/journal.pone.0010246.

15.

A synthetic peptide-acrylate surface for production of insulin-producing cells from human embryonic stem cells.

Lin PY, Hung SH, Yang YC, Liao LC, Hsieh YC, Yen HJ, Lu HE, Lee MS, Chu IM, Hwang SM.

Stem Cells Dev. 2014 Feb 15;23(4):372-9. doi: 10.1089/scd.2013.0253. Epub 2013 Nov 16.

16.

Chemically-defined scaffolds created with electrospun synthetic nanofibers to maintain mouse embryonic stem cell culture under feeder-free conditions.

Liu L, Yuan Q, Shi J, Li X, Jung D, Wang L, Yamauchi K, Nakatsuji N, Kamei K, Chen Y.

Biotechnol Lett. 2012 Oct;34(10):1951-7. doi: 10.1007/s10529-012-0973-9. Epub 2012 Jun 20.

PMID:
22714273
17.

Feeder-layer free culture system for human embryonic stem cells.

Amit M.

Methods Mol Biol. 2007;407:11-20. doi: 10.1007/978-1-59745-536-7_2.

PMID:
18453245
18.

Modified hyaluronan hydrogels support the maintenance of mouse embryonic stem cells and human induced pluripotent stem cells.

Liu Y, Charles LF, Zarembinski TI, Johnson KI, Atzet SK, Wesselschmidt RL, Wight ME, Kuhn LT.

Macromol Biosci. 2012 Aug;12(8):1034-42. doi: 10.1002/mabi.201200043. Epub 2012 Jun 25.

PMID:
22730306
19.

Long-term self-renewal of human pluripotent stem cells on peptide-decorated poly(OEGMA-co-HEMA) brushes under fully defined conditions.

Deng Y, Zhang X, Zhao X, Li Q, Ye Z, Li Z, Liu Y, Zhou Y, Ma H, Pan G, Pei D, Fang J, Wei S.

Acta Biomater. 2013 Nov;9(11):8840-50. doi: 10.1016/j.actbio.2013.07.017. Epub 2013 Jul 24.

PMID:
23891809
20.

Defining long-term maintenance conditions of human embryonic stem cells with arrayed cellular microenvironment technology.

Brafman DA, Shah KD, Fellner T, Chien S, Willert K.

Stem Cells Dev. 2009 Oct;18(8):1141-54. doi: 10.1089/scd.2008.0410.

PMID:
19327010
Items per page

Supplemental Content

Write to the Help Desk