Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 111

Similar articles for PubMed (Select 21772262)

1.

A dynamic model of proteome changes reveals new roles for transcript alteration in yeast.

Lee MV, Topper SE, Hubler SL, Hose J, Wenger CD, Coon JJ, Gasch AP.

Mol Syst Biol. 2011 Jul 19;7:514. doi: 10.1038/msb.2011.48.

2.

Playing tag with the yeast proteome.

Andrews BJ, Bader GD, Boone C.

Nat Biotechnol. 2003 Nov;21(11):1297-9. No abstract available.

PMID:
14595360
3.

Quantitative protein and mRNA profiling shows selective post-transcriptional control of protein expression by vasopressin in kidney cells.

Khositseth S, Pisitkun T, Slentz DH, Wang G, Hoffert JD, Knepper MA, Yu MJ.

Mol Cell Proteomics. 2011 Jan;10(1):M110.004036. doi: 10.1074/mcp.M110.004036. Epub 2010 Oct 12.

4.

Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes.

de Groot MJ, Daran-Lapujade P, van Breukelen B, Knijnenburg TA, de Hulster EA, Reinders MJ, Pronk JT, Heck AJ, Slijper M.

Microbiology. 2007 Nov;153(Pt 11):3864-78.

PMID:
17975095
5.

A screen for RNA-binding proteins in yeast indicates dual functions for many enzymes.

Scherrer T, Mittal N, Janga SC, Gerber AP.

PLoS One. 2010 Nov 11;5(11):e15499. doi: 10.1371/journal.pone.0015499.

6.

Deglycosylation systematically improves N-glycoprotein identification in liquid chromatography-tandem mass spectrometry proteomics for analysis of cell wall stress responses in Saccharomyces cerevisiae lacking Alg3p.

Bailey UM, Schulz BL.

J Chromatogr B Analyt Technol Biomed Life Sci. 2013 Apr 1;923-924:16-21. doi: 10.1016/j.jchromb.2013.01.026. Epub 2013 Feb 4.

PMID:
23454304
7.

Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast.

de Godoy LM, Olsen JV, Cox J, Nielsen ML, Hubner NC, Fröhlich F, Walther TC, Mann M.

Nature. 2008 Oct 30;455(7217):1251-4. doi: 10.1038/nature07341. Epub 2008 Sep 28.

PMID:
18820680
8.

Delayed correlation of mRNA and protein expression in rapamycin-treated cells and a role for Ggc1 in cellular sensitivity to rapamycin.

Fournier ML, Paulson A, Pavelka N, Mosley AL, Gaudenz K, Bradford WD, Glynn E, Li H, Sardiu ME, Fleharty B, Seidel C, Florens L, Washburn MP.

Mol Cell Proteomics. 2010 Feb;9(2):271-84. doi: 10.1074/mcp.M900415-MCP200. Epub 2009 Nov 10.

9.

Neutron-encoded mass signatures for multiplexed proteome quantification.

Hebert AS, Merrill AE, Bailey DJ, Still AJ, Westphall MS, Strieter ER, Pagliarini DJ, Coon JJ.

Nat Methods. 2013 Apr;10(4):332-4. doi: 10.1038/nmeth.2378. Epub 2013 Feb 24.

10.

Proteome-wide search reveals unexpected RNA-binding proteins in Saccharomyces cerevisiae.

Tsvetanova NG, Klass DM, Salzman J, Brown PO.

PLoS One. 2010 Sep 10;5(9). pii: e12671. doi: 10.1371/journal.pone.0012671.

11.

Integrative analyses of posttranscriptional regulation in the yeast Saccharomyces cerevisiae using transcriptomic and proteomic data.

Wu G, Nie L, Zhang W.

Curr Microbiol. 2008 Jul;57(1):18-22. doi: 10.1007/s00284-008-9145-5. Epub 2008 Mar 25.

PMID:
18363056
12.

Post-transcriptional expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale.

Beyer A, Hollunder J, Nasheuer HP, Wilhelm T.

Mol Cell Proteomics. 2004 Nov;3(11):1083-92. Epub 2004 Aug 23.

13.

Quantitative transcriptome, proteome, and sulfur metabolite profiling of the Saccharomyces cerevisiae response to arsenite.

Thorsen M, Lagniel G, Kristiansson E, Junot C, Nerman O, Labarre J, Tamás MJ.

Physiol Genomics. 2007 Jun 19;30(1):35-43. Epub 2007 Feb 27.

14.

Quantitative proteomic analysis of ribosomal protein L35b mutant of Saccharomyces cerevisiae.

Song YB, Jhun MA, Park T, Huh WK.

Biochim Biophys Acta. 2010 Apr;1804(4):676-83. doi: 10.1016/j.bbapap.2009.10.014. Epub 2009 Oct 29.

PMID:
19879384
15.

Global analysis of protein expression in yeast.

Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O'Shea EK, Weissman JS.

Nature. 2003 Oct 16;425(6959):737-41.

16.

The proteome of a wine yeast strain during fermentation, correlation with the transcriptome.

Rossignol T, Kobi D, Jacquet-Gutfreund L, Blondin B.

J Appl Microbiol. 2009 Jul;107(1):47-55. doi: 10.1111/j.1365-2672.2009.04156.x. Epub 2009 Feb 25.

PMID:
19245406
17.

Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: lipidome meets proteome.

Grillitsch K, Connerth M, Köfeler H, Arrey TN, Rietschel B, Wagner B, Karas M, Daum G.

Biochim Biophys Acta. 2011 Dec;1811(12):1165-76. doi: 10.1016/j.bbalip.2011.07.015. Epub 2011 Jul 26.

18.

Global mRNA expression analysis in myosin II deficient strains of Saccharomyces cerevisiae reveals an impairment of cell integrity functions.

Rodríguez-Quiñones JF, Irizarry RA, Díaz-Blanco NL, Rivera-Molina FE, Gómez-Garzón D, Rodríguez-Medina JR.

BMC Genomics. 2008 Jan 23;9:34. doi: 10.1186/1471-2164-9-34.

19.

Stress-dependent coordination of transcriptome and translatome in yeast.

Halbeisen RE, Gerber AP.

PLoS Biol. 2009 May;7(5):e1000105. doi: 10.1371/journal.pbio.1000105. Epub 2009 May 5.

20.

Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise.

Newman JR, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, DeRisi JL, Weissman JS.

Nature. 2006 Jun 15;441(7095):840-6. Epub 2006 May 14.

PMID:
16699522
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk