Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 110

1.

Effect of the size and shape of a red blood cell on elastic light scattering properties at the single-cell level.

Kinnunen M, Kauppila A, Karmenyan A, Myllylä R.

Biomed Opt Express. 2011 Jul 1;2(7):1803-14. doi: 10.1364/BOE.2.001803. Epub 2011 Jun 1.

PMID:
21750759
[PubMed]
Free PMC Article
2.

Measurement of elastic light scattering from two optically trapped microspheres and red blood cells in a transparent medium.

Kinnunen M, Kauppila A, Karmenyan A, Myllylä R.

Opt Lett. 2011 Sep 15;36(18):3554-6. doi: 10.1364/OL.36.003554.

PMID:
21931388
[PubMed - indexed for MEDLINE]
3.

Comparison of Mie theory and the light scattering of red blood cells.

Steinke JM, Shepherd AP.

Appl Opt. 1988 Oct 1;27(19):4027-33. doi: 10.1364/AO.27.004027.

PMID:
20539510
[PubMed]
4.

Quantitative analysis of optical properties of flowing blood using a photon-cell interactive Monte Carlo code: effects of red blood cells' orientation on light scattering.

Sakota D, Takatani S.

J Biomed Opt. 2012 May;17(5):057007. doi: 10.1117/1.JBO.17.5.057007.

PMID:
22612146
[PubMed - indexed for MEDLINE]
5.

Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation.

Yurkin MA, Semyanov KA, Tarasov PA, Chernyshev AV, Hoekstra AG, Maltsev VP.

Appl Opt. 2005 Sep 1;44(25):5249-56.

PMID:
16149348
[PubMed - indexed for MEDLINE]
6.

Light scattering by aggregated red blood cells.

Tsinopoulos SV, Sellountos EJ, Polyzos D.

Appl Opt. 2002 Mar 1;41(7):1408-17.

PMID:
11900021
[PubMed - indexed for MEDLINE]
7.

Measurement of the trapping efficiency of an elliptical optical trap with rigid and elastic objects.

Kauppila A, Kinnunen M, Karmenyan A, Myllylä R.

Appl Opt. 2012 Aug 10;51(23):5705-12. doi: 10.1364/AO.51.005705.

PMID:
22885584
[PubMed - indexed for MEDLINE]
8.

Comparison of the discrete dipole approximation and the discrete source method for simulation of light scattering by red blood cells.

Gilev KV, Eremina E, Yurkin MA, Maltsev VP.

Opt Express. 2010 Mar 15;18(6):5681-90. doi: 10.1364/OE.18.005681.

PMID:
20389584
[PubMed - indexed for MEDLINE]
9.

High-resolution angle-resolved measurements of light scattered at small angles by red blood cells in suspension.

Turcu I, Pop CV, Neamtu S.

Appl Opt. 2006 Mar 20;45(9):1964-71.

PMID:
16579566
[PubMed]
10.

Scattering of he-ne laser light by an average-sized red blood cell.

Tsinopoulos SV, Polyzos D.

Appl Opt. 1999 Sep 1;38(25):5499-510.

PMID:
18324059
[PubMed]
11.

Optical clearing at cellular level.

Kinnunen M, Bykov AV, Tuorila J, Haapalainen T, Karmenyan AV, Tuchin VV.

J Biomed Opt. 2014 Jul;19(7):71409. doi: 10.1117/1.JBO.19.7.071409.

PMID:
24615672
[PubMed - indexed for MEDLINE]
12.

T-matrix computations of light scattering by red blood cells.

Nilsson AM, Alsholm P, Karlsson A, Andersson-Engels S.

Appl Opt. 1998 May 1;37(13):2735-48.

PMID:
18273219
[PubMed]
13.

Aggregation of red blood cells in suspension: study by light-scattering technique at small angles.

Pop CV, Neamtu S.

J Biomed Opt. 2008 Jul-Aug;13(4):041308. doi: 10.1117/1.2956658.

PMID:
19021316
[PubMed - indexed for MEDLINE]
14.

Elastic light-scattering measurements of single biological cells in an optical trap.

Doornbos RM, Schaeffer M, Hoekstra AG, Sloot PM, Grooth BG, Greve J.

Appl Opt. 1996 Feb 1;35(4):729-34. doi: 10.1364/AO.35.000729.

PMID:
21069063
[PubMed]
15.

A study of the dynamic properties of the human red blood cell membrane using quasi-elastic light-scattering spectroscopy.

Tishler RB, Carlson FD.

Biophys J. 1993 Dec;65(6):2586-600.

PMID:
8312494
[PubMed - indexed for MEDLINE]
Free PMC Article
16.

Influence of osmolarity on the optical properties of human erythrocytes.

Friebel M, Helfmann J, Meinke MC.

J Biomed Opt. 2010 Sep-Oct;15(5):055005. doi: 10.1117/1.3486542.

PMID:
21054087
[PubMed - indexed for MEDLINE]
17.

Light-scattering technique for the study of orientation and deformation of red blood cells in a concentrated suspension.

Gandjbakhche AH, Mills P, Snabre P.

Appl Opt. 1994 Feb 20;33(6):1070-8. doi: 10.1364/AO.33.001070.

PMID:
20862118
[PubMed]
18.

A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes.

Gu M, Kuriakose S, Gan X.

Opt Express. 2007 Feb 5;15(3):1369-75.

PMID:
19532367
[PubMed]
19.

Shape anisotropy induces rotations in optically trapped red blood cells.

Bambardekar K, Dharmadhikari JA, Dharmadhikari AK, Yamada T, Kato T, Kono H, Fujimura Y, Sharma S, Mathur D.

J Biomed Opt. 2010 Jul-Aug;15(4):041504. doi: 10.1117/1.3430732.

PMID:
20799782
[PubMed - indexed for MEDLINE]
20.

Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher.

Ekpenyong AE, Posey CL, Chaput JL, Burkart AK, Marquardt MM, Smith TJ, Nichols MG.

Appl Opt. 2009 Nov 10;48(32):6344-54. doi: 10.1364/AO.48.006344.

PMID:
19904335
[PubMed - indexed for MEDLINE]
Free PMC Article

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk