Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Mucoadhesive nanoparticles may disrupt the protective human mucus barrier by altering its microstructure.

Wang YY, Lai SK, So C, Schneider C, Cone R, Hanes J.

PLoS One. 2011;6(6):e21547. doi: 10.1371/journal.pone.0021547. Epub 2011 Jun 29.

2.

Nanoparticles reveal that human cervicovaginal mucus is riddled with pores larger than viruses.

Lai SK, Wang YY, Hida K, Cone R, Hanes J.

Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):598-603. doi: 10.1073/pnas.0911748107. Epub 2009 Dec 16. Erratum in: Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14371.

3.

Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus.

Lai SK, O'Hanlon DE, Harrold S, Man ST, Wang YY, Cone R, Hanes J.

Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1482-7. Epub 2007 Jan 23.

4.

Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier.

Tang BC, Dawson M, Lai SK, Wang YY, Suk JS, Yang M, Zeitlin P, Boyle MP, Fu J, Hanes J.

Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19268-73. doi: 10.1073/pnas.0905998106. Epub 2009 Nov 9.

5.

Rapid transport of muco-inert nanoparticles in cystic fibrosis sputum treated with N-acetyl cysteine.

Suk JS, Lai SK, Boylan NJ, Dawson MR, Boyle MP, Hanes J.

Nanomedicine (Lond). 2011 Feb;6(2):365-75. doi: 10.2217/nnm.10.123.

6.

Altering mucus rheology to "solidify" human mucus at the nanoscale.

Lai SK, Wang YY, Cone R, Wirtz D, Hanes J.

PLoS One. 2009;4(1):e4294. doi: 10.1371/journal.pone.0004294. Epub 2009 Jan 28.

7.

Nanoparticle penetration of human cervicovaginal mucus: the effect of polyvinyl alcohol.

Yang M, Lai SK, Yu T, Wang YY, Happe C, Zhong W, Zhang M, Anonuevo A, Fridley C, Hung A, Fu J, Hanes J.

J Control Release. 2014 Oct 28;192:202-8. doi: 10.1016/j.jconrel.2014.07.045. Epub 2014 Jul 29.

8.

The microstructure and bulk rheology of human cervicovaginal mucus are remarkably resistant to changes in pH.

Wang YY, Lai SK, Ensign LM, Zhong W, Cone R, Hanes J.

Biomacromolecules. 2013 Dec 9;14(12):4429-35. doi: 10.1021/bm401356q. Epub 2013 Nov 22.

9.

Drug carrier nanoparticles that penetrate human chronic rhinosinusitis mucus.

Lai SK, Suk JS, Pace A, Wang YY, Yang M, Mert O, Chen J, Kim J, Hanes J.

Biomaterials. 2011 Sep;32(26):6285-90. doi: 10.1016/j.biomaterials.2011.05.008. Epub 2011 Jun 12.

10.

Nanoparticle diffusion in respiratory mucus from humans without lung disease.

Schuster BS, Suk JS, Woodworth GF, Hanes J.

Biomaterials. 2013 Apr;34(13):3439-46. doi: 10.1016/j.biomaterials.2013.01.064. Epub 2013 Feb 4.

11.

The penetration of fresh undiluted sputum expectorated by cystic fibrosis patients by non-adhesive polymer nanoparticles.

Suk JS, Lai SK, Wang YY, Ensign LM, Zeitlin PL, Boyle MP, Hanes J.

Biomaterials. 2009 May;30(13):2591-7. doi: 10.1016/j.biomaterials.2008.12.076. Epub 2009 Jan 26.

12.

Mucus-penetrating nanoparticles made with "mucoadhesive" poly(vinyl alcohol).

Popov A, Enlow E, Bourassa J, Chen H.

Nanomedicine. 2016 Apr 22. pii: S1549-9634(16)30034-X. doi: 10.1016/j.nano.2016.04.006. [Epub ahead of print]

PMID:
27112308
13.

Immobilization of pseudorabies virus in porcine tracheal respiratory mucus revealed by single particle tracking.

Yang X, Forier K, Steukers L, Van Vlierberghe S, Dubruel P, Braeckmans K, Glorieux S, Nauwynck HJ.

PLoS One. 2012;7(12):e51054. doi: 10.1371/journal.pone.0051054. Epub 2012 Dec 7.

14.

Pretreatment of human cervicovaginal mucus with pluronic F127 enhances nanoparticle penetration without compromising mucus barrier properties to herpes simplex virus.

Ensign LM, Lai SK, Wang YY, Yang M, Mert O, Hanes J, Cone R.

Biomacromolecules. 2014 Dec 8;15(12):4403-9. doi: 10.1021/bm501419z. Epub 2014 Nov 11.

15.

Enhanced viscoelasticity of human cystic fibrotic sputum correlates with increasing microheterogeneity in particle transport.

Dawson M, Wirtz D, Hanes J.

J Biol Chem. 2003 Dec 12;278(50):50393-401. Epub 2003 Sep 17.

16.

Effect of surface chemistry on nanoparticle interaction with gastrointestinal mucus and distribution in the gastrointestinal tract following oral and rectal administration in the mouse.

Maisel K, Ensign L, Reddy M, Cone R, Hanes J.

J Control Release. 2015 Jan 10;197:48-57. doi: 10.1016/j.jconrel.2014.10.026. Epub 2014 Nov 4.

17.

Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.

Cohen BS, Heikkinen MS, Hazi Y, Gao H, Peters P, Lippmann M.

Res Rep Health Eff Inst. 2004 Sep;(121):1-35; discussion 37-46.

PMID:
15553489
18.

Biodegradable mucus-penetrating nanoparticles composed of diblock copolymers of polyethylene glycol and poly(lactic-co-glycolic acid).

Yu T, Wang YY, Yang M, Schneider C, Zhong W, Pulicare S, Choi WJ, Mert O, Fu J, Lai SK, Hanes J.

Drug Deliv Transl Res. 2012 Apr;2(2). doi: 10.1007/s13346-011-0048-9.

19.

Disruption of the mucus barrier by topically applied exogenous particles.

McGill SL, Smyth HD.

Mol Pharm. 2010 Dec 6;7(6):2280-8. doi: 10.1021/mp100242r. Epub 2010 Oct 15.

20.

Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues.

Lai SK, Wang YY, Hanes J.

Adv Drug Deliv Rev. 2009 Feb 27;61(2):158-71. doi: 10.1016/j.addr.2008.11.002. Epub 2008 Dec 13. Review.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk