Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 125

1.

Organic nanofibers integrated by transfer technique in field-effect transistor devices.

Tavares L, Kjelstrup-Hansen J, Thilsing-Hansen K, Rubahn HG.

Nanoscale Res Lett. 2011 Apr 8;6(1):319. doi: 10.1186/1556-276X-6-319.

PMID:
21711821
[PubMed]
Free PMC Article
2.

Monolayer to multilayer nanostructural growth transition in N-type oligothiophenes on Au(111) and implications for organic field-effect transistor performance.

Dholakia GR, Meyyappan M, Facchetti A, Marks TJ.

Nano Lett. 2006 Nov;6(11):2447-55.

PMID:
17090072
[PubMed - indexed for MEDLINE]
3.

Enhanced ambipolar charge injection with semiconducting polymer/carbon nanotube thin films for light-emitting transistors.

Gwinner MC, Jakubka F, Gannott F, Sirringhaus H, Zaumseil J.

ACS Nano. 2012 Jan 24;6(1):539-48. doi: 10.1021/nn203874a. Epub 2011 Dec 13.

PMID:
22142143
[PubMed - indexed for MEDLINE]
4.

High performance organic thin film transistors with solution processed TTF-TCNQ charge transfer salt as electrodes.

Mukherjee B, Mukherjee M.

Langmuir. 2011 Sep 6;27(17):11246-50. doi: 10.1021/la201780c. Epub 2011 Aug 12.

PMID:
21812432
[PubMed - indexed for MEDLINE]
6.

High-performance low-cost organic field-effect transistors with chemically modified bottom electrodes.

Di CA, Yu G, Liu Y, Xu X, Wei D, Song Y, Sun Y, Wang Y, Zhu D, Liu J, Liu X, Wu D.

J Am Chem Soc. 2006 Dec 27;128(51):16418-9.

PMID:
17177348
[PubMed]
7.

Unique device operations by combining optical-memory effect and electrical-gate modulation in a photochromism-based dual-gate transistor.

Ishiguro Y, Hayakawa R, Yasuda T, Chikyow T, Wakayama Y.

ACS Appl Mater Interfaces. 2013 Oct 9;5(19):9726-31. doi: 10.1021/am402833k. Epub 2013 Sep 30.

PMID:
24040885
[PubMed]
8.

Optical and electrical properties of electrochemically doped organic field effect transistors.

Yumusak C, Abbas M, Sariciftci NS.

J Lumin. 2013 Feb;134(1-2):107-112.

PMID:
23482672
[PubMed]
Free PMC Article
9.

Light-emitting field-effect transistor based on a tetracene thin film.

Hepp A, Heil H, Weise W, Ahles M, Schmechel R, von Seggern H.

Phys Rev Lett. 2003 Oct 10;91(15):157406. Epub 2003 Oct 10.

PMID:
14611497
[PubMed]
10.

Ultra-flat coplanar electrodes for controlled electrical contact of molecular films.

Martin F, Hendriksen B, Katan A, Ratera I, Qi Y, Harteneck B, Liddle JA, Salmeron M.

Rev Sci Instrum. 2011 Dec;82(12):123901. doi: 10.1063/1.3664789.

PMID:
22225225
[PubMed]
11.

Pinning of organic nanofiber surface growth.

de Oliveira Hansen RM, Kjelstrup-Hansen J, Rubahn HG.

Nanoscale. 2010 Jan;2(1):134-8. doi: 10.1039/b9nr00206e. Epub 2009 Oct 6.

PMID:
20648375
[PubMed - indexed for MEDLINE]
12.

Nano approach investigation of the conduction mechanism in polyaniline nanofibers.

Lin YF, Chen CH, Xie WJ, Yang SH, Hsu CS, Lin MT, Jian WB.

ACS Nano. 2011 Feb 22;5(2):1541-8. doi: 10.1021/nn103525b. Epub 2011 Jan 31.

PMID:
21280617
[PubMed]
13.

Porphyrin-silicon hybrid field-effect transistor with individually addressable top-gate structure.

Seol ML, Choi SJ, Kim CH, Moon DI, Choi YK.

ACS Nano. 2012 Jan 24;6(1):183-9. doi: 10.1021/nn204535p. Epub 2011 Dec 15.

PMID:
22148941
[PubMed - indexed for MEDLINE]
14.

On the origin of contact resistances of organic thin film transistors.

Marinkovic M, Belaineh D, Wagner V, Knipp D.

Adv Mater. 2012 Aug 2;24(29):4005-9. doi: 10.1002/adma.201201311. Epub 2012 Jun 22.

PMID:
22730030
[PubMed - indexed for MEDLINE]
15.

Electrochemical doping for lowering contact barriers in organic field effect transistors.

Schaur S, Stadler P, Meana-Esteban B, Neugebauer H, Serdar Sariciftci N.

Org Electron. 2012 Aug;13(8):1296-1301.

PMID:
23483101
[PubMed]
Free PMC Article
16.

A single polyaniline nanofiber field effect transistor and its gas sensing mechanisms.

Chen D, Lei S, Chen Y.

Sensors (Basel). 2011;11(7):6509-16. doi: 10.3390/s110706509. Epub 2011 Jun 24.

PMID:
22163969
[PubMed - indexed for MEDLINE]
Free PMC Article
17.

Fabrication of organic field effect transistor by directly grown poly(3 hexylthiophene) crystalline nanowires on carbon nanotube aligned array electrode.

Sarker BK, Liu J, Zhai L, Khondaker SI.

ACS Appl Mater Interfaces. 2011 Apr;3(4):1180-5. doi: 10.1021/am200013y. Epub 2011 Mar 28. Erratum in: ACS Appl Mater Interfaces. 2011 Jul;3(7):2805.

PMID:
21405101
[PubMed]
18.

Fabrication and evaluation of solution-processed reduced graphene oxide electrodes for p- and n-channel bottom-contact organic thin-film transistors.

Becerril HA, Stoltenberg RM, Tang ML, Roberts ME, Liu Z, Chen Y, Kim do H, Lee BL, Lee S, Bao Z.

ACS Nano. 2010 Nov 23;4(11):6343-52. doi: 10.1021/nn101369j. Epub 2010 Oct 14.

PMID:
20945927
[PubMed]
19.

Improved morphology and performance from surface treatments of naphthalenetetracarboxylic diimide bottom contact field-effect transistors.

Sun J, Devine R, Dhar BM, Jung BJ, See KC, Katz HE.

ACS Appl Mater Interfaces. 2009 Aug;1(8):1763-9. doi: 10.1021/am900296h.

PMID:
20355793
[PubMed]
20.

On practical charge injection at the metal/organic semiconductor interface.

Kumatani A, Li Y, Darmawan P, Minari T, Tsukagoshi K.

Sci Rep. 2013;3:1026. doi: 10.1038/srep01026. Epub 2013 Jan 4.

PMID:
23293741
[PubMed]
Free PMC Article
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk