Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

A fission yeast-based platform for phosphodiesterase inhibitor HTSs and analyses of phosphodiesterase activity.

Demirbas D, Ceyhan O, Wyman AR, Hoffman CS.

Handb Exp Pharmacol. 2011;(204):135-49. doi: 10.1007/978-3-642-17969-3_5. Review.

2.

Development of a fission yeast-based high-throughput screen to identify chemical regulators of cAMP phosphodiesterases.

Ivey FD, Wang L, Demirbas D, Allain C, Hoffman CS.

J Biomol Screen. 2008 Jan;13(1):62-71. doi: 10.1177/1087057107312127.

3.

A yeast-based high-throughput screen for modulators of phosphodiesterase activity.

de Medeiros AS, Hoffman CS.

Methods Mol Biol. 2015;1294:181-90. doi: 10.1007/978-1-4939-2537-7_14.

PMID:
25783886
4.

Identification of biologically active PDE11-selective inhibitors using a yeast-based high-throughput screen.

Ceyhan O, Birsoy K, Hoffman CS.

Chem Biol. 2012 Jan 27;19(1):155-63. doi: 10.1016/j.chembiol.2011.12.010.

5.

Cyclic nucleotide phosphodiesterase (PDE) inhibitors: novel therapeutic agents for progressive renal disease.

Cheng J, Grande JP.

Exp Biol Med (Maywood). 2007 Jan;232(1):38-51. Review.

PMID:
17202584
6.

Potential therapeutic applications of phosphodiesterase inhibition in prostate cancer.

Hamilton TK, Hu N, Kolomitro K, Bell EN, Maurice DH, Graham CH, Siemens DR.

World J Urol. 2013 Apr;31(2):325-30. doi: 10.1007/s00345-012-0848-7. Epub 2012 Mar 2.

PMID:
22383129
8.

Rabbit corpus cavernosum smooth muscle shows a different phosphodiesterase profile than human corpus cavernosum.

Qiu Y, Kraft P, Lombardi E, Clancy J.

J Urol. 2000 Sep;164(3 Pt 1):882-6.

PMID:
10953172
9.

Use of a Schizosaccharomyces pombe PKA-repressible reporter to study cGMP metabolising phosphodiesterases.

Demirbas D, Ceyhan O, Wyman AR, Ivey FD, Allain C, Wang L, Sharuk MN, Francis SH, Hoffman CS.

Cell Signal. 2011 Mar;23(3):594-601. doi: 10.1016/j.cellsig.2010.11.013. Epub 2010 Nov 29.

10.

Identification, characterization, and functional role of phosphodiesterase type IV in cerebral vessels: effects of selective phosphodiesterase inhibitors.

Willette RN, Shiloh AO, Sauermelch CF, Sulpizio A, Michell MP, Cieslinski LB, Torphy TJ, Ohlstein EH.

J Cereb Blood Flow Metab. 1997 Feb;17(2):210-9.

11.

Fission yeast-based high-throughput screens for PKA pathway inhibitors and activators.

de Medeiros AS, Kwak G, Vanderhooft J, Rivera S, Gottlieb R, Hoffman CS.

Methods Mol Biol. 2015;1263:77-91. doi: 10.1007/978-1-4939-2269-7_6.

PMID:
25618337
12.

Advances in targeting cyclic nucleotide phosphodiesterases.

Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC.

Nat Rev Drug Discov. 2014 Apr;13(4):290-314. doi: 10.1038/nrd4228. Review.

13.

Cloning and characterization of a cAMP-specific phosphodiesterase (TbPDE2B) from Trypanosoma brucei.

Rascón A, Soderling SH, Schaefer JB, Beavo JA.

Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4714-9.

14.

New classes of PDE7 inhibitors identified by a fission yeast-based HTS.

Alaamery MA, Wyman AR, Ivey FD, Allain C, Demirbas D, Wang L, Ceyhan O, Hoffman CS.

J Biomol Screen. 2010 Apr;15(4):359-67. doi: 10.1177/1087057110362100. Epub 2010 Mar 12.

15.
17.
18.
19.

Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents.

Lugnier C.

Pharmacol Ther. 2006 Mar;109(3):366-98. Epub 2005 Aug 15. Review.

PMID:
16102838
20.

Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use.

Bender AT, Beavo JA.

Pharmacol Rev. 2006 Sep;58(3):488-520. Review.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk