Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 114

1.

Self-regulating enzyme-nanotube ensemble films and their application as flexible electrodes for biofuel cells.

Miyake T, Yoshino S, Yamada T, Hata K, Nishizawa M.

J Am Chem Soc. 2011 Apr 6;133(13):5129-34. doi: 10.1021/ja111517e. Epub 2011 Mar 10.

PMID:
21391588
2.

Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis.

Kamitaka Y, Tsujimura S, Setoyama N, Kajino T, Kano K.

Phys Chem Chem Phys. 2007 Apr 21;9(15):1793-801. Epub 2007 Feb 6.

PMID:
17415490
3.

Stretchable biofuel cell with enzyme-modified conductive textiles.

Ogawa Y, Takai Y, Kato Y, Kai H, Miyake T, Nishizawa M.

Biosens Bioelectron. 2015 Dec 15;74:947-52. doi: 10.1016/j.bios.2015.07.063. Epub 2015 Jul 29.

PMID:
26257187
4.

Cellobiose dehydrogenase aryl diazonium modified single walled carbon nanotubes: enhanced direct electron transfer through a positively charged surface.

Tasca F, Harreither W, Ludwig R, Gooding JJ, Gorton L.

Anal Chem. 2011 Apr 15;83(8):3042-9. doi: 10.1021/ac103250b. Epub 2011 Mar 18.

5.

Flexible carbon cloth electrode modified by hollow core-mesoporous shell carbon as a novel efficient bio-anode for biofuel cell.

Olyveira GM, Kim JH, Martins MV, Iost RM, Chaudhari KN, Yu JS, Crespilho FN.

J Nanosci Nanotechnol. 2012 Jan;12(1):356-60.

PMID:
22523986
6.

Biocatalytic electrodes based on single-walled carbon nanotube network thin films.

Wang D, Rack JJ, Chen L.

J Nanosci Nanotechnol. 2009 Apr;9(4):2310-5.

PMID:
19437969
7.

Comparison of direct and mediated electron transfer for cellobiose dehydrogenase from Phanerochaete sordida.

Tasca F, Gorton L, Harreither W, Haltrich D, Ludwig R, Nöll G.

Anal Chem. 2009 Apr 1;81(7):2791-8. doi: 10.1021/ac900225z.

PMID:
19256522
8.

Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes.

Zebda A, Gondran C, Le Goff A, Holzinger M, Cinquin P, Cosnier S.

Nat Commun. 2011 Jun 28;2:370. doi: 10.1038/ncomms1365.

9.

Carbon nanotubes with platinum nano-islands as glucose biofuel cell electrodes.

Ryu J, Kim HS, Hahn HT, Lashmore D.

Biosens Bioelectron. 2010 Mar 15;25(7):1603-8. doi: 10.1016/j.bios.2009.11.019. Epub 2009 Nov 27.

PMID:
20022482
10.
11.

Modified gold surfaces by poly(amidoamine) dendrimers and fructose dehydrogenase for mediated fructose sensing.

Damar K, Odaci Demirkol D.

Talanta. 2011 Dec 15;87:67-73. doi: 10.1016/j.talanta.2011.09.042. Epub 2011 Sep 29.

PMID:
22099650
12.

Improvement of a direct electron transfer-type fructose/dioxygen biofuel cell with a substrate-modified biocathode.

So K, Kawai S, Hamano Y, Kitazumi Y, Shirai O, Hibi M, Ogawa J, Kano K.

Phys Chem Chem Phys. 2014 Mar 14;16(10):4823-9. doi: 10.1039/c3cp54888k.

PMID:
24469104
13.

Micro-cubic monolithic carbon cryogel electrode for direct electron transfer reaction of fructose dehydrogenase.

Hamano Y, Tsujimura S, Shirai O, Kano K.

Bioelectrochemistry. 2012 Dec;88:114-7. doi: 10.1016/j.bioelechem.2012.07.005. Epub 2012 Jul 22.

PMID:
22917965
14.

Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes.

Zhang M, Smith A, Gorski W.

Anal Chem. 2004 Sep 1;76(17):5045-50.

PMID:
15373440
15.

Microwave decoration of Pt nanoparticles on entangled 3D carbon nanotube architectures as PEM fuel cell cathode.

Sherrell PC, Zhang W, Zhao J, Wallace GG, Chen J, Minett AI.

ChemSusChem. 2012 Jul;5(7):1233-40. doi: 10.1002/cssc.201100667. Epub 2012 Jun 13.

PMID:
22696244
16.

Citric acid cycle biomimic on a carbon electrode.

Sokic-Lazic D, Minteer SD.

Biosens Bioelectron. 2008 Dec 1;24(4):945-50. doi: 10.1016/j.bios.2008.07.043. Epub 2008 Aug 3.

PMID:
18774285
17.

Flexible carbon nanotube--Cu2O hybrid electrodes for li-ion batteries.

Goyal A, Reddy AL, Ajayan PM.

Small. 2011 Jun 20;7(12):1709-13. doi: 10.1002/smll.201002051. Epub 2011 May 16.

PMID:
21574248
18.

Regeneration of carbon nanotube and nanofibre composite film electrode for electrical removal of cupric ions.

Zhan Y, Li H, Pan L, Zhang Y, Chen Y, Sun Z.

Water Sci Technol. 2010;61(6):1427-32. doi: 10.2166/wst.2010.888.

PMID:
20351421
19.

Heterologous overexpression and characterization of a flavoprotein-cytochrome c complex fructose dehydrogenase of Gluconobacter japonicus NBRC3260.

Kawai S, Goda-Tsutsumi M, Yakushi T, Kano K, Matsushita K.

Appl Environ Microbiol. 2013 Mar;79(5):1654-60. doi: 10.1128/AEM.03152-12. Epub 2012 Dec 28.

20.

Biofuel cell and phenolic biosensor based on acid-resistant laccase-glutaraldehyde functionalized chitosan-multiwalled carbon nanotubes nanocomposite film.

Tan Y, Deng W, Ge B, Xie Q, Huang J, Yao S.

Biosens Bioelectron. 2009 Mar 15;24(7):2225-31. doi: 10.1016/j.bios.2008.11.026. Epub 2008 Dec 7.

PMID:
19153037
Items per page

Supplemental Content

Write to the Help Desk