Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Differential biological activity of disease-associated JAK2 mutants.

Zou H, Yan D, Mohi G.

FEBS Lett. 2011 Apr 6;585(7):1007-13. doi: 10.1016/j.febslet.2011.02.032. Epub 2011 Mar 4.

2.

Identification of oncostatin M as a JAK2 V617F-dependent amplifier of cytokine production and bone marrow remodeling in myeloproliferative neoplasms.

Hoermann G, Cerny-Reiterer S, Herrmann H, Blatt K, Bilban M, Gisslinger H, Gisslinger B, Müllauer L, Kralovics R, Mannhalter C, Valent P, Mayerhofer M.

FASEB J. 2012 Feb;26(2):894-906. doi: 10.1096/fj.11-193078. Epub 2011 Nov 3.

3.

Conditional expression of heterozygous or homozygous Jak2V617F from its endogenous promoter induces a polycythemia vera-like disease.

Akada H, Yan D, Zou H, Fiering S, Hutchison RE, Mohi MG.

Blood. 2010 Apr 29;115(17):3589-97. doi: 10.1182/blood-2009-04-215848. Epub 2010 Mar 2.

4.

JAK2V617F allele burden in patients with myeloproliferative neoplasms.

Alshemmari SH, Rajaan R, Ameen R, Al-Drees MA, Almosailleakh MR.

Ann Hematol. 2014 May;93(5):791-6. doi: 10.1007/s00277-013-1988-6. Epub 2013 Dec 22.

PMID:
24362471
5.

JAK2 V617F and beyond: role of genetics and aberrant signaling in the pathogenesis of myeloproliferative neoplasms.

Oh ST, Gotlib J.

Expert Rev Hematol. 2010 Jun;3(3):323-37. doi: 10.1586/ehm.10.28. Review.

PMID:
21082983
6.

Combined inhibition of Janus kinase 1/2 for the treatment of JAK2V617F-driven neoplasms: selective effects on mutant cells and improvements in measures of disease severity.

Liu PC, Caulder E, Li J, Waeltz P, Margulis A, Wynn R, Becker-Pasha M, Li Y, Crowgey E, Hollis G, Haley P, Sparks RB, Combs AP, Rodgers JD, Burn TC, Vaddi K, Fridman JS.

Clin Cancer Res. 2009 Nov 15;15(22):6891-900. doi: 10.1158/1078-0432.CCR-09-1298. Epub 2009 Nov 3.

7.

JAK2 mutations and clinical practice in myeloproliferative neoplasms.

Tefferi A.

Cancer J. 2007 Nov-Dec;13(6):366-71. Review.

PMID:
18032973
8.

Selective inhibition of JAK2-driven erythroid differentiation of polycythemia vera progenitors.

Geron I, Abrahamsson AE, Barroga CF, Kavalerchik E, Gotlib J, Hood JD, Durocher J, Mak CC, Noronha G, Soll RM, Tefferi A, Kaushansky K, Jamieson CH.

Cancer Cell. 2008 Apr;13(4):321-30. doi: 10.1016/j.ccr.2008.02.017.

9.

Loss of wild-type Jak2 allele enhances myeloid cell expansion and accelerates myelofibrosis in Jak2V617F knock-in mice.

Akada H, Akada S, Hutchison RE, Mohi G.

Leukemia. 2014 Aug;28(8):1627-35. doi: 10.1038/leu.2014.52. Epub 2014 Jan 31.

10.

[Novel method in diagnosis of chronic myeloproliferative disorders--detection of JAK2 mutation].

Rajnai H, Bödör C, Reiniger L, Timár B, Csernus B, Szepesi A, Csomor J, Matolcsy A.

Orv Hetil. 2006 Nov 12;147(45):2175-9. Hungarian.

PMID:
17402211
11.

Different involvement of the megakaryocytic lineage by the JAK2 V617F mutation in Polycythemia vera, essential thrombocythemia and chronic idiopathic myelofibrosis.

Hussein K, Brakensiek K, Buesche G, Buhr T, Wiese B, Kreipe H, Bock O.

Ann Hematol. 2007 Apr;86(4):245-53. Epub 2007 Jan 30.

PMID:
17262192
12.

A JAK2 interdomain linker relays Epo receptor engagement signals to kinase activation.

Zhao L, Dong H, Zhang CC, Kinch L, Osawa M, Iacovino M, Grishin NV, Kyba M, Huang LJ.

J Biol Chem. 2009 Sep 25;284(39):26988-98. doi: 10.1074/jbc.M109.011387. Epub 2009 Jul 28.

13.

An inhibitor of Janus kinase 2 prevents polycythemia in mice.

Mathur A, Mo JR, Kraus M, O'Hare E, Sinclair P, Young J, Zhao S, Wang Y, Kopinja J, Qu X, Reilly J, Walker D, Xu L, Aleksandrowicz D, Marshall G, Scott ML, Kohl NE, Bachman E.

Biochem Pharmacol. 2009 Aug 15;78(4):382-9. doi: 10.1016/j.bcp.2009.04.025. Epub 2009 May 3.

PMID:
19413997
14.

Myeloproliferative neoplasms 5 years after discovery of JAK2V617F: what is the impact of JAK2 inhibitor therapy?

Tibes R, Mesa RA.

Leuk Lymphoma. 2011 Jul;52(7):1178-87. doi: 10.3109/10428194.2011.566952. Epub 2011 May 23. Review.

PMID:
21599574
15.

JAK2, the JAK2 V617F mutant and cytokine receptors.

Staerk J, Kallin A, Royer Y, Diaconu CC, Dusa A, Demoulin JB, Vainchenker W, Constantinescu SN.

Pathol Biol (Paris). 2007 Mar;55(2):88-91. Epub 2006 Aug 14. Review.

PMID:
16904848
16.

Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F.

Bandaranayake RM, Ungureanu D, Shan Y, Shaw DE, Silvennoinen O, Hubbard SR.

Nat Struct Mol Biol. 2012 Aug;19(8):754-9. doi: 10.1038/nsmb.2348. Epub 2012 Jul 22.

17.

Bim and Mcl-1 exert key roles in regulating JAK2V617F cell survival.

Rubert J, Qian Z, Andraos R, Guthy DA, Radimerski T.

BMC Cancer. 2011 Jan 19;11:24. doi: 10.1186/1471-2407-11-24.

18.

Clinical correlates of JAK2V617F presence or allele burden in myeloproliferative neoplasms: a critical reappraisal.

Vannucchi AM, Antonioli E, Guglielmelli P, Pardanani A, Tefferi A.

Leukemia. 2008 Jul;22(7):1299-307. doi: 10.1038/leu.2008.113. Epub 2008 May 22. Review.

PMID:
18496562
19.

Increased basal intracellular signaling patterns do not correlate with JAK2 genotype in human myeloproliferative neoplasms.

Anand S, Stedham F, Gudgin E, Campbell P, Beer P, Green AR, Huntly BJ.

Blood. 2011 Aug 11;118(6):1610-21. doi: 10.1182/blood-2011-02-335042. Epub 2011 Jun 8.

20.

Critical role of FANCC in JAK2 V617F mutant-induced resistance to DNA cross-linking drugs.

Ueda F, Sumi K, Tago K, Kasahara T, Funakoshi-Tago M.

Cell Signal. 2013 Nov;25(11):2115-24. doi: 10.1016/j.cellsig.2013.07.003. Epub 2013 Jul 6.

PMID:
23838005
Items per page

Supplemental Content

Write to the Help Desk