Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 185

Similar articles for PubMed (Select 21311901)

1.

The optic nerve head is the site of axonal transport disruption, axonal cytoskeleton damage and putative axonal regeneration failure in a rat model of glaucoma.

Chidlow G, Ebneter A, Wood JP, Casson RJ.

Acta Neuropathol. 2011 Jun;121(6):737-51. doi: 10.1007/s00401-011-0807-1. Epub 2011 Feb 11.

2.

Impaired Axonal Transport and Glaucoma.

Fahy ET, Chrysostomou V, Crowston JG.

Curr Eye Res. 2015 Jun 30:1-11. [Epub ahead of print]

PMID:
26125320
3.

Protective effect of 14-3-3 antibodies on stressed neuroretinal cells via the mitochondrial apoptosis pathway.

Bell K, Wilding C, Funke S, Pfeiffer N, Grus FH.

BMC Ophthalmol. 2015 Jun 27;15(1):64. doi: 10.1186/s12886-015-0044-9.

4.

Towards axonal regeneration and neuroprotection in glaucoma: Rho kinase inhibitors as promising therapeutics.

Van de Velde S, De Groef L, Stalmans I, Moons L, Van Hove I.

Prog Neurobiol. 2015 Jun 17. pii: S0301-0082(15)00060-X. doi: 10.1016/j.pneurobio.2015.06.002. [Epub ahead of print] Review.

PMID:
26093354
5.

Assessment of retinal ganglion cell damage in glaucomatous optic neuropathy: Axon transport, injury and soma loss.

Nuschke AC, Farrell SR, Levesque JM, Chauhan BC.

Exp Eye Res. 2015 Jun 9. pii: S0014-4835(15)00193-1. doi: 10.1016/j.exer.2015.06.006. [Epub ahead of print] Review.

PMID:
26070986
6.

Experimentally Induced Mammalian Models of Glaucoma.

Ishikawa M, Yoshitomi T, Zorumski CF, Izumi Y.

Biomed Res Int. 2015;2015:281214. Epub 2015 May 3. Review.

7.

Plate reader-based cell viability assays for glioprotection using primary rat optic nerve head astrocytes.

Kaja S, Payne AJ, Naumchuk Y, Levy D, Zaidi DH, Altman AM, Nawazish S, Ghuman JK, Gerdes BC, Moore MA, Koulen P.

Exp Eye Res. 2015 Jun 3. pii: S0014-4835(15)00182-7. doi: 10.1016/j.exer.2015.05.023. [Epub ahead of print]

PMID:
26048476
8.

Acquired axonal degeneration and regeneration: Recent insights and clinical correlations.

Benarroch EE.

Neurology. 2015 May 19;84(20):2076-85. doi: 10.1212/WNL.0000000000001601. Epub 2015 Apr 22. No abstract available.

PMID:
25904690
9.

Autophagy in axonal degeneration in glaucomatous optic neuropathy.

Munemasa Y, Kitaoka Y.

Prog Retin Eye Res. 2015 Jul;47:1-18. doi: 10.1016/j.preteyeres.2015.03.002. Epub 2015 Mar 26. Review.

10.

An energy theory of glaucoma.

Li Y, Li D, Ying X, Khaw PT, Raisman G.

Glia. 2015 Mar 23. doi: 10.1002/glia.22825. [Epub ahead of print]

PMID:
25808326
11.

Differential roles of Aβ processing in hypoxia-induced axonal damage.

Christianson MG, Lo DC.

Neurobiol Dis. 2015 May;77:94-105. doi: 10.1016/j.nbd.2015.02.027. Epub 2015 Mar 11.

PMID:
25771168
12.

Cytoskeletal disruption activates the DLK/JNK pathway, which promotes axonal regeneration and mimics a preconditioning injury.

Valakh V, Frey E, Babetto E, Walker LJ, DiAntonio A.

Neurobiol Dis. 2015 May;77:13-25. doi: 10.1016/j.nbd.2015.02.014. Epub 2015 Feb 26.

PMID:
25726747
13.

Neuritin 1 promotes retinal ganglion cell survival and axonal regeneration following optic nerve crush.

Sharma TP, Liu Y, Wordinger RJ, Pang IH, Clark AF.

Cell Death Dis. 2015 Feb 26;6:e1661. doi: 10.1038/cddis.2015.22.

PMID:
25719245
14.

Axonal Terminals Exposed to Amyloid-β May Not Lead to Pre-Synaptic Axonal Damage.

Sun SW, Nishioka C, Labib W, Liang HF.

J Alzheimers Dis. 2015;45(4):1139-48. doi: 10.3233/JAD-142154.

PMID:
25697704
15.

Pathogenesis of glaucoma: how to prevent ganglion cell from axonal destruction?

Carreras FJ.

Neural Regen Res. 2014 Dec 1;9(23):2046-7. doi: 10.4103/1673-5374.147928. No abstract available.

16.

Intravitreal delivery of human NgR-Fc decoy protein regenerates axons after optic nerve crush and protects ganglion cells in glaucoma models.

Wang X, Lin J, Arzeno A, Choi JY, Boccio J, Frieden E, Bhargava A, Maynard G, Tsai JC, Strittmatter SM.

Invest Ophthalmol Vis Sci. 2015 Feb 5;56(2):1357-66. doi: 10.1167/iovs.14-15472.

PMID:
25655801
17.

Expression of inducible heat shock proteins Hsp27 and Hsp70 in the visual pathway of rats subjected to various models of retinal ganglion cell injury.

Chidlow G, Wood JP, Casson RJ.

PLoS One. 2014 Dec 23;9(12):e114838. doi: 10.1371/journal.pone.0114838. eCollection 2014.

18.

The expression of syntaphilin is down-regulated in the optic nerve after axonal injury.

Miki A, Kanamori A, Nakamura M, Matsumoto Y, Mizokami J, Negi A.

Exp Eye Res. 2014 Dec;129:38-47. doi: 10.1016/j.exer.2014.10.017. Epub 2014 Oct 24.

PMID:
25447562
19.

Retinal transcriptome profiling at transcription start sites: a cap analysis of gene expression early after axonal injury.

Yasuda M, Tanaka Y, Nishiguchi KM, Ryu M, Tsuda S, Maruyama K, Nakazawa T.

BMC Genomics. 2014 Nov 18;15:982. doi: 10.1186/1471-2164-15-982.

20.

Establishment of an experimental ferret ocular hypertension model for the analysis of central visual pathway damage.

Fujishiro T, Kawasaki H, Aihara M, Saeki T, Ymagishi R, Atarashi T, Mayama C, Araie M.

Sci Rep. 2014 Oct 13;4:6501. doi: 10.1038/srep06501.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk