Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 106

1.

Lymph node cortical sinus organization and relationship to lymphocyte egress dynamics and antigen exposure.

Grigorova IL, Panteleev M, Cyster JG.

Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20447-52. doi: 10.1073/pnas.1009968107. Epub 2010 Nov 8.

2.

Cortical sinus probing, S1P1-dependent entry and flow-based capture of egressing T cells.

Grigorova IL, Schwab SR, Phan TG, Pham TH, Okada T, Cyster JG.

Nat Immunol. 2009 Jan;10(1):58-65. doi: 10.1038/ni.1682. Epub 2008 Dec 7. Erratum in: Nat Immunol. 2009 Feb;10(2):223.

3.

Impaired T-cell responses to sphingosine-1-phosphate in HIV-1 infected lymph nodes.

Mudd JC, Murphy P, Manion M, Debernardo R, Hardacre J, Ammori J, Hardy GA, Harding CV, Mahabaleshwar GH, Jain MK, Jacobson JM, Brooks AD, Lewis S, Schacker TW, Anderson J, Haddad EK, Cubas RA, Rodriguez B, Sieg SF, Lederman MM.

Blood. 2013 Apr 11;121(15):2914-22. doi: 10.1182/blood-2012-07-445783. Epub 2013 Feb 19.

4.

B lymphocytes exit lymph nodes through cortical lymphatic sinusoids by a mechanism independent of sphingosine-1-phosphate-mediated chemotaxis.

Sinha RK, Park C, Hwang IY, Davis MD, Kehrl JH.

Immunity. 2009 Mar 20;30(3):434-46. doi: 10.1016/j.immuni.2008.12.018. Epub 2009 Feb 19.

5.
6.

Expansion of cortical and medullary sinuses restrains lymph node hypertrophy during prolonged inflammation.

Tan KW, Yeo KP, Wong FH, Lim HY, Khoo KL, Abastado JP, Angeli V.

J Immunol. 2012 Apr 15;188(8):4065-80. doi: 10.4049/jimmunol.1101854. Epub 2012 Mar 19.

7.

Sphingosine-1-phosphate agonists increase macrophage homing, lymphocyte contacts, and endothelial junctional complex formation in murine lymph nodes.

Singer II, Tian M, Wickham LA, Lin J, Matheravidathu SS, Forrest MJ, Mandala S, Quackenbush EJ.

J Immunol. 2005 Dec 1;175(11):7151-61.

8.

Specifying the patterns of immune cell migration.

Cyster JG.

Novartis Found Symp. 2007;281:54-61; discussion 61-4, 208-9. Review.

PMID:
17534065
9.

Sphingosine-1-phosphate receptors control B-cell migration through signaling components associated with primary immunodeficiencies, chronic lymphocytic leukemia, and multiple sclerosis.

Sic H, Kraus H, Madl J, Flittner KA, von Münchow AL, Pieper K, Rizzi M, Kienzler AK, Ayata K, Rauer S, Kleuser B, Salzer U, Burger M, Zirlik K, Lougaris V, Plebani A, Römer W, Loeffler C, Scaramuzza S, Villa A, Noguchi E, Grimbacher B, Eibel H.

J Allergy Clin Immunol. 2014 Aug;134(2):420-8. doi: 10.1016/j.jaci.2014.01.037. Epub 2014 Mar 26.

PMID:
24679343
10.

Sphingosine 1-phosphate type 1 receptor agonism inhibits transendothelial migration of medullary T cells to lymphatic sinuses.

Wei SH, Rosen H, Matheu MP, Sanna MG, Wang SK, Jo E, Wong CH, Parker I, Cahalan MD.

Nat Immunol. 2005 Dec;6(12):1228-35. Epub 2005 Nov 6.

PMID:
16273098
11.

High endothelial venules as traffic control points maintaining lymphocyte population homeostasis in lymph nodes.

Mionnet C, Sanos SL, Mondor I, Jorquera A, Laugier JP, Germain RN, Bajénoff M.

Blood. 2011 Dec 1;118(23):6115-22. doi: 10.1182/blood-2011-07-367409. Epub 2011 Sep 21.

12.

Cutting edge: CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention.

Mackay LK, Braun A, Macleod BL, Collins N, Tebartz C, Bedoui S, Carbone FR, Gebhardt T.

J Immunol. 2015 Mar 1;194(5):2059-63. doi: 10.4049/jimmunol.1402256. Epub 2015 Jan 26.

13.

Enhanced trafficking to the pancreatic lymph nodes and auto-antigen presentation capacity distinguishes peritoneal B lymphocytes in non-obese diabetic mice.

Alam C, Valkonen S, Ohls S, Törnqvist K, Hänninen A.

Diabetologia. 2010 Feb;53(2):346-55. doi: 10.1007/s00125-009-1599-x. Epub 2009 Nov 22.

PMID:
20033667
14.

Role of sphingosine 1-phosphate receptor type 1 in lymphocyte egress from secondary lymphoid tissues and thymus.

Chiba K, Matsuyuki H, Maeda Y, Sugahara K.

Cell Mol Immunol. 2006 Feb;3(1):11-9. Review.

15.

Type II membrane protein CD69 regulates the formation of resting T-helper memory.

Shinoda K, Tokoyoda K, Hanazawa A, Hayashizaki K, Zehentmeier S, Hosokawa H, Iwamura C, Koseki H, Tumes DJ, Radbruch A, Nakayama T.

Proc Natl Acad Sci U S A. 2012 May 8;109(19):7409-14. doi: 10.1073/pnas.1118539109. Epub 2012 Apr 2.

16.

The sphingosine 1-phosphate receptor 1 causes tissue retention by inhibiting the entry of peripheral tissue T lymphocytes into afferent lymphatics.

Ledgerwood LG, Lal G, Zhang N, Garin A, Esses SJ, Ginhoux F, Merad M, Peche H, Lira SA, Ding Y, Yang Y, He X, Schuchman EH, Allende ML, Ochando JC, Bromberg JS.

Nat Immunol. 2008 Jan;9(1):42-53. Epub 2007 Nov 25.

PMID:
18037890
17.

CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs.

Shiow LR, Rosen DB, Brdicková N, Xu Y, An J, Lanier LL, Cyster JG, Matloubian M.

Nature. 2006 Mar 23;440(7083):540-4. Epub 2006 Mar 8.

PMID:
16525420
18.

A role for LFA-1 in delaying T-lymphocyte egress from lymph nodes.

Reichardt P, Patzak I, Jones K, Etemire E, Gunzer M, Hogg N.

EMBO J. 2013 Mar 20;32(6):829-43. doi: 10.1038/emboj.2013.33. Epub 2013 Feb 26.

19.

Intravital Two-Photon Imaging of Lymphocytes Crossing High Endothelial Venules and Cortical Lymphatics in the Inguinal Lymph Node.

Park C, Hwang IY, Kehrl JH.

Methods Mol Biol. 2016;1407:195-206. doi: 10.1007/978-1-4939-3480-5_15.

PMID:
27271904
20.

Lymph node B lymphocyte trafficking is constrained by anatomy and highly dependent upon chemoattractant desensitization.

Park C, Hwang IY, Sinha RK, Kamenyeva O, Davis MD, Kehrl JH.

Blood. 2012 Jan 26;119(4):978-89. doi: 10.1182/blood-2011-06-364273. Epub 2011 Oct 28.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk