Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 175

1.

Optical properties of normal and carcinomatous bronchial tissue.

Qu J, Macaulay C, Lam S, Palcic B.

Appl Opt. 1994 Nov 1;33(31):7397-405. doi: 10.1364/AO.33.007397.

PMID:
20941301
[PubMed]
2.

Inverse hybrid technique for determining the optical properties of turbid media from integrating-sphere measurements.

Yaroslavsky IV, Yaroslavsky AN, Goldbach T, Schwarzmaier HJ.

Appl Opt. 1996 Dec 1;35(34):6797-809. doi: 10.1364/AO.35.006797.

PMID:
21151265
[PubMed]
3.

Double-integrating-sphere system for measuring the optical properties of tissue.

Pickering JW, Prahl SA, van Wieringen N, Beek JF, Sterenborg HJ, van Gemert MJ.

Appl Opt. 1993 Feb 1;32(4):399-410. doi: 10.1364/AO.32.000399.

PMID:
20802704
[PubMed]
4.

Changes in tissue optical properties due to radio-frequency ablation of myocardium.

Swartling J, PĂ„lsson S, Platonov P, Olsson SB, Andersson-Engels S.

Med Biol Eng Comput. 2003 Jul;41(4):403-9.

PMID:
12892362
[PubMed - indexed for MEDLINE]
5.

Changes in the optical properties (at 632.8 nm) of slowly heated myocardium.

Pickering JW, Bosman S, Posthumus P, Blokland P, Beek JF, van Gemert MJ.

Appl Opt. 1993 Feb 1;32(4):367-71. doi: 10.1364/AO.32.000367.

PMID:
20802699
[PubMed]
6.

Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements.

Yaroslavsky AN, Yaroslavsky IV, Goldbach T, Schwarzmaier HJ.

J Biomed Opt. 1999 Jan;4(1):47-53.

PMID:
23015169
[PubMed]
7.

Changes in the absorption and scattering properties in the near-infrared region during the growth of Bacillus subtilis in liquid culture.

Dzhongova E, Harwood CR, Thennadil SN.

Appl Spectrosc. 2009 Jan;63(1):25-32. doi: 10.1366/000370209787169777.

PMID:
19146716
[PubMed - indexed for MEDLINE]
8.

Effect of light losses of sample between two integrating spheres on optical properties estimation.

Zhu D, Lu W, Zeng S, Luo Q.

J Biomed Opt. 2007 Nov-Dec;12(6):064004. doi: 10.1117/1.2815691.

PMID:
18163820
[PubMed - indexed for MEDLINE]
9.

[Spectral characteristics of normal breast samples in the 350-850 nm wavelength range].

Wang YH, Yang HQ, Xie SS, Ye Z, Su YM.

Guang Pu Xue Yu Guang Pu Fen Xi. 2009 Oct;29(10):2751-5. Chinese.

PMID:
20038053
[PubMed - indexed for MEDLINE]
10.

Optical properties of porcine skin dermis between 900 nm and 1500 nm.

Du Y, Hu XH, Cariveau M, Ma X, Kalmus GW, Lu JQ.

Phys Med Biol. 2001 Jan;46(1):167-81.

PMID:
11197670
[PubMed - indexed for MEDLINE]
11.

Measurements of the optical properties of tissue in conjunction with photodynamic therapy.

Nilsson AM, Berg R, Andersson-Engels S.

Appl Opt. 1995 Jul 20;34(21):4609-19. doi: 10.1364/AO.34.004609.

PMID:
21052293
[PubMed]
12.

Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue.

Alhamami M, Kolios MC, Tavakkoli J.

Med Phys. 2014 May;41(5):053502. doi: 10.1118/1.4871621.

PMID:
24784408
[PubMed - indexed for MEDLINE]
13.

Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique.

Simpson CR, Kohl M, Essenpreis M, Cope M.

Phys Med Biol. 1998 Sep;43(9):2465-78.

PMID:
9755939
[PubMed - indexed for MEDLINE]
14.

Optical characteristics of cartilage at a wavelength of 1560 nm and their dynamic behavior under laser heating conditions.

Sviridov AP, Kondyurin AV.

J Biomed Opt. 2010 Sep-Oct;15(5):055003. doi: 10.1117/1.3484749.

PMID:
21054085
[PubMed - indexed for MEDLINE]
15.

In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm.

Beek JF, Blokland P, Posthumus P, Aalders M, Pickering JW, Sterenborg HJ, van Gemert MJ.

Phys Med Biol. 1997 Nov;42(11):2255-61.

PMID:
9394410
[PubMed - indexed for MEDLINE]
16.

Optical properties of adenocarcinoma and squamous cell carcinoma of the gastroesophageal junction.

Holmer C, Lehmann KS, Wanken J, Reissfelder C, Roggan A, Mueller G, Buhr HJ, Ritz JP.

J Biomed Opt. 2007 Jan-Feb;12(1):014025.

PMID:
17343500
[PubMed - indexed for MEDLINE]
17.

In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling.

Gebhart SC, Lin WC, Mahadevan-Jansen A.

Phys Med Biol. 2006 Apr 21;51(8):2011-27. Epub 2006 Mar 30.

PMID:
16585842
[PubMed - indexed for MEDLINE]
18.

Empirical relationship between Kubelka-Munk and radiative transfer coefficients for extracting optical parameters of tissues in diffusive and nondiffusive regimes.

Roy A, Ramasubramaniam R, Gaonkar HA.

J Biomed Opt. 2012 Nov;17(11):115006.

PMID:
23214177
[PubMed - indexed for MEDLINE]
19.

Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2,000 nm.

Friebel M, Helfmann J, Netz U, Meinke M.

J Biomed Opt. 2009 May-Jun;14(3):034001. doi: 10.1117/1.3127200.

PMID:
19566295
[PubMed - indexed for MEDLINE]
20.

Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range.

Yaroslavsky AN, Schulze PC, Yaroslavsky IV, Schober R, Ulrich F, Schwarzmaier HJ.

Phys Med Biol. 2002 Jun 21;47(12):2059-73.

PMID:
12118601
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk