Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 552

Similar articles for PubMed (Select 20714780)

1.

A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation.

Bera AK, Ho NW, Khan A, Sedlak M.

J Ind Microbiol Biotechnol. 2011 May;38(5):617-26. doi: 10.1007/s10295-010-0806-6. Epub 2010 Aug 17.

PMID:
20714780
2.

Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae.

Lee SH, Kodaki T, Park YC, Seo JH.

J Biotechnol. 2012 Apr 30;158(4):184-91. doi: 10.1016/j.jbiotec.2011.06.005. Epub 2011 Jun 15.

PMID:
21699927
3.
4.

Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.

Matsushika A, Watanabe S, Kodaki T, Makino K, Inoue H, Murakami K, Takimura O, Sawayama S.

Appl Microbiol Biotechnol. 2008 Nov;81(2):243-55. doi: 10.1007/s00253-008-1649-1. Epub 2008 Aug 27.

PMID:
18751695
5.

Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.

Almeida JR, Bertilsson M, Hahn-Hägerdal B, Lidén G, Gorwa-Grauslund MF.

Appl Microbiol Biotechnol. 2009 Sep;84(4):751-61. doi: 10.1007/s00253-009-2053-1. Epub 2009 Jun 9.

PMID:
19506862
7.

Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae.

Krahulec S, Klimacek M, Nidetzky B.

Biotechnol J. 2009 May;4(5):684-94. doi: 10.1002/biot.200800334.

PMID:
19452479
8.

Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation.

Hector RE, Mertens JA, Bowman MJ, Nichols NN, Cotta MA, Hughes SR.

Yeast. 2011 Sep;28(9):645-60. doi: 10.1002/yea.1893. Epub 2011 Aug 1.

PMID:
21809385
9.

Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase.

Khattab SM, Saimura M, Kodaki T.

J Biotechnol. 2013 Jun 10;165(3-4):153-6. doi: 10.1016/j.jbiotec.2013.03.009. Epub 2013 Apr 8.

PMID:
23578809
10.

Bioethanol production from xylose by recombinant Saccharomyces cerevisiae expressing xylose reductase, NADP(+)-dependent xylitol dehydrogenase, and xylulokinase.

Matsushika A, Watanabe S, Kodaki T, Makino K, Sawayama S.

J Biosci Bioeng. 2008 Mar;105(3):296-9. doi: 10.1263/jbb.105.296.

PMID:
18397783
11.

Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase.

Matsushika A, Sawayama S.

Enzyme Microb Technol. 2011 May 6;48(6-7):466-71. doi: 10.1016/j.enzmictec.2011.02.002. Epub 2011 Mar 2.

PMID:
22113018
12.

Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae.

Verho R, Londesborough J, Penttilä M, Richard P.

Appl Environ Microbiol. 2003 Oct;69(10):5892-7.

13.

Physiological and enzymatic comparison between Pichia stipitis and recombinant Saccharomyces cerevisiae on xylose fermentation.

Guo C, Jiang N.

World J Microbiol Biotechnol. 2013 Mar;29(3):541-7. doi: 10.1007/s11274-012-1208-x. Epub 2012 Nov 20.

PMID:
23180545
14.
15.

Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion.

Hector RE, Dien BS, Cotta MA, Qureshi N.

J Ind Microbiol Biotechnol. 2011 Sep;38(9):1193-202. doi: 10.1007/s10295-010-0896-1. Epub 2010 Nov 25.

PMID:
21107642
16.

High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae.

Karhumaa K, Fromanger R, Hahn-Hägerdal B, Gorwa-Grauslund MF.

Appl Microbiol Biotechnol. 2007 Jan;73(5):1039-46. Epub 2006 Sep 15.

PMID:
16977466
17.

Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae.

Krahulec S, Klimacek M, Nidetzky B.

J Biotechnol. 2012 Apr 30;158(4):192-202. doi: 10.1016/j.jbiotec.2011.08.026. Epub 2011 Aug 25.

18.

Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering.

Bera AK, Sedlak M, Khan A, Ho NW.

Appl Microbiol Biotechnol. 2010 Aug;87(5):1803-11. doi: 10.1007/s00253-010-2609-0. Epub 2010 May 7.

PMID:
20449743
19.
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk