Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 102

Similar articles for PubMed (Select 20587522)

1.

Loss of function of the tumor suppressor DKC1 perturbs p27 translation control and contributes to pituitary tumorigenesis.

Bellodi C, Krasnykh O, Haynes N, Theodoropoulou M, Peng G, Montanaro L, Ruggero D.

Cancer Res. 2010 Jul 15;70(14):6026-35. doi: 10.1158/0008-5472.CAN-09-4730. Epub 2010 Jun 29.

2.

Impaired control of IRES-mediated translation in X-linked dyskeratosis congenita.

Yoon A, Peng G, Brandenburger Y, Zollo O, Xu W, Rego E, Ruggero D.

Science. 2006 May 12;312(5775):902-6. Erratum in: Science. 2006 Sep;313(5791):1238. Brandenburg, Yves [corrected to Brandenburger, Yves].

3.

Severity of X-linked dyskeratosis congenita (DKCX) cellular defects is not directly related to dyskerin (DKC1) activity in ribosomal RNA biogenesis or mRNA translation.

Thumati NR, Zeng XL, Au HH, Jang CJ, Jan E, Wong JM.

Hum Mutat. 2013 Dec;34(12):1698-707. doi: 10.1002/humu.22447. Epub 2013 Oct 21.

PMID:
24115260
4.

Novel dyskerin-mediated mechanism of p53 inactivation through defective mRNA translation.

Montanaro L, Calienni M, Bertoni S, Rocchi L, Sansone P, Storci G, Santini D, Ceccarelli C, Taffurelli M, Carnicelli D, Brigotti M, Bonafè M, Treré D, Derenzini M.

Cancer Res. 2010 Jun 1;70(11):4767-77. doi: 10.1158/0008-5472.CAN-09-4024. Epub 2010 May 25.

5.

Defects in mTR stability and telomerase activity produced by the Dkc1 A353V mutation in dyskeratosis congenita are rescued by a peptide from the dyskerin TruB domain.

Machado-Pinilla R, Carrillo J, Manguan-Garcia C, Sastre L, Mentzer A, Gu BW, Mason PJ, Perona R.

Clin Transl Oncol. 2012 Oct;14(10):755-63. doi: 10.1007/s12094-012-0865-4. Epub 2012 Jul 24.

6.

Anomalous electrophoretic migration of newly synthesized ribosomal RNAs and their precursors from cells with DKC1 mutations.

Gu BW, Zhao C, Fan JM, Dai Q, Bessler M, Mason PJ.

FEBS Lett. 2009 Sep 17;583(18):3086-90. doi: 10.1016/j.febslet.2009.08.038. Epub 2009 Sep 2.

7.

Dyskerin depletion increases VEGF mRNA internal ribosome entry site-mediated translation.

Rocchi L, Pacilli A, Sethi R, Penzo M, Schneider RJ, Treré D, Brigotti M, Montanaro L.

Nucleic Acids Res. 2013 Sep;41(17):8308-18. doi: 10.1093/nar/gkt587. Epub 2013 Jul 1.

8.

rRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cells.

Jack K, Bellodi C, Landry DM, Niederer RO, Meskauskas A, Musalgaonkar S, Kopmar N, Krasnykh O, Dean AM, Thompson SR, Ruggero D, Dinman JD.

Mol Cell. 2011 Nov 18;44(4):660-6. doi: 10.1016/j.molcel.2011.09.017.

9.

Deregulation of oncogene-induced senescence and p53 translational control in X-linked dyskeratosis congenita.

Bellodi C, Kopmar N, Ruggero D.

EMBO J. 2010 Jun 2;29(11):1865-76. doi: 10.1038/emboj.2010.83. Epub 2010 May 7.

10.

Tumor suppressor loss in pituitary tumors.

Alexander JM.

Brain Pathol. 2001 Jul;11(3):342-55. Review.

PMID:
11414476
11.

Accelerated hematopoietic stem cell aging in a mouse model of dyskeratosis congenita responds to antioxidant treatment.

Gu BW, Fan JM, Bessler M, Mason PJ.

Aging Cell. 2011 Apr;10(2):338-48. doi: 10.1111/j.1474-9726.2011.00674.x. Epub 2011 Feb 21.

12.

Targeted disruption of Dkc1, the gene mutated in X-linked dyskeratosis congenita, causes embryonic lethality in mice.

He J, Navarrete S, Jasinski M, Vulliamy T, Dokal I, Bessler M, Mason PJ.

Oncogene. 2002 Oct 31;21(50):7740-4.

13.

Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification.

Ruggero D, Grisendi S, Piazza F, Rego E, Mari F, Rao PH, Cordon-Cardo C, Pandolfi PP.

Science. 2003 Jan 10;299(5604):259-62.

14.

Dyskeratosis congenita: molecular insights into telomerase function, ageing and cancer.

Marrone A, Dokal I.

Expert Rev Mol Med. 2004 Dec 20;6(26):1-23. Review.

PMID:
15613268
15.

p27 variant and corticotropinoma susceptibility: a genetic and in vitro study.

Sekiya T, Bronstein MD, Benfini K, Longuini VC, Jallad RS, Machado MC, Goncalves TD, Osaki LH, Higashi L, Viana-Jr J, Kater C, Lee M, Molatore S, Francisco G, Chammas R, Naslavsky MS, Schlesinger D, Gama P, Duarte YA, Lebrão ML, Zatz M, Meirelles O, Liberman B, Fragoso MC, Toledo SP, Pellegata NS, Toledo RA.

Endocr Relat Cancer. 2014 Apr 28;21(3):395-404. doi: 10.1530/ERC-13-0486. Print 2014 Jun.

16.

p27 and Rb are on overlapping pathways suppressing tumorigenesis in mice.

Park MS, Rosai J, Nguyen HT, Capodieci P, Cordon-Cardo C, Koff A.

Proc Natl Acad Sci U S A. 1999 May 25;96(11):6382-7.

17.

Reduced expression levels of the cell-cycle inhibitor p27Kip1 in human pituitary adenomas.

Bamberger CM, Fehn M, Bamberger AM, Lüdecke DK, Beil FU, Saeger W, Schulte HM.

Eur J Endocrinol. 1999 Mar;140(3):250-5.

18.

Transforming growth factor-beta, transforming growth factor-beta receptor II, and p27Kip1 expression in nontumorous and neoplastic human pituitaries.

Jin L, Qian X, Kulig E, Sanno N, Scheithauer BW, Kovacs K, Young WF Jr, Lloyd RV.

Am J Pathol. 1997 Aug;151(2):509-19.

19.

Mouse dyskerin mutations affect accumulation of telomerase RNA and small nucleolar RNA, telomerase activity, and ribosomal RNA processing.

Mochizuki Y, He J, Kulkarni S, Bessler M, Mason PJ.

Proc Natl Acad Sci U S A. 2004 Jul 20;101(29):10756-61. Epub 2004 Jul 7.

20.

p27Kip1-deficient mice exhibit accelerated growth hormone-releasing hormone (GHRH)-induced somatotrope proliferation and adenoma formation.

Teixeira LT, Kiyokawa H, Peng XD, Christov KT, Frohman LA, Kineman RD.

Oncogene. 2000 Apr 6;19(15):1875-84.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk