Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 97

1.

Observations on squalene accumulation in Saccharomyces cerevisiae due to the manipulation of HMG2 and ERG6.

Mantzouridou F, Tsimidou MZ.

FEMS Yeast Res. 2010 Sep;10(6):699-707. doi: 10.1111/j.1567-1364.2010.00645.x. Epub 2010 Jun 17.

PMID:
20550581
[PubMed - indexed for MEDLINE]
2.

Combined overexpression of genes of the ergosterol biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae.

Veen M, Stahl U, Lang C.

FEMS Yeast Res. 2003 Oct;4(1):87-95.

PMID:
14554200
[PubMed - indexed for MEDLINE]
3.

Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synthesis in Saccharomyces cerevisiae.

Donald KA, Hampton RY, Fritz IB.

Appl Environ Microbiol. 1997 Sep;63(9):3341-4.

PMID:
9292983
[PubMed - indexed for MEDLINE]
Free PMC Article
4.

Investigating the effects of statins on cellular lipid metabolism using a yeast expression system.

Leszczynska A, Burzynska B, Plochocka D, Kaminska J, Zimnicka M, Kania M, Kiliszek M, Wysocka-Kapcinska M, Danikiewicz W, Szkopinska A.

PLoS One. 2009 Dec 30;4(12):e8499. doi: 10.1371/journal.pone.0008499.

PMID:
20041128
[PubMed - indexed for MEDLINE]
Free PMC Article
5.

A novel sequence element is involved in the transcriptional regulation of expression of the ERG1 (squalene epoxidase) gene in Saccharomyces cerevisiae.

Leber R, Zenz R, Schröttner K, Fuchsbichler S, Pühringer B, Turnowsky F.

Eur J Biochem. 2001 Feb;268(4):914-24.

PMID:
11179957
[PubMed - indexed for MEDLINE]
Free Article
6.

Genetic and biochemical aspects of yeast sterol regulation involving 3-hydroxy-3-methylglutaryl coenzyme A reductase.

Bard M, Downing JF.

J Gen Microbiol. 1981 Aug;125(2):415-20.

PMID:
7033470
[PubMed - indexed for MEDLINE]
Free Article
7.

Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast.

Polakowski T, Stahl U, Lang C.

Appl Microbiol Biotechnol. 1998 Jan;49(1):66-71.

PMID:
9487712
[PubMed - indexed for MEDLINE]
8.

Squalene versus ergosterol formation using Saccharomyces cerevisiae: combined effect of oxygen supply, inoculum size, and fermentation time on yield and selectivity of the bioprocess.

Mantzouridou F, Naziri E, Tsimidou MZ.

J Agric Food Chem. 2009 Jul 22;57(14):6189-98. doi: 10.1021/jf900673n.

PMID:
19537785
[PubMed - indexed for MEDLINE]
9.

Production of geranylgeraniol on overexpression of a prenyl diphosphate synthase fusion gene in Saccharomyces cerevisiae.

Ohto C, Muramatsu M, Obata S, Sakuradani E, Shimizu S.

Appl Microbiol Biotechnol. 2010 Jul;87(4):1327-34. doi: 10.1007/s00253-010-2571-x.

PMID:
20393702
[PubMed - indexed for MEDLINE]
10.

Regulation of partitioned sterol biosynthesis in Saccharomyces cerevisiae.

Casey WM, Keesler GA, Parks LW.

J Bacteriol. 1992 Nov;174(22):7283-8.

PMID:
1429452
[PubMed - indexed for MEDLINE]
Free PMC Article
11.

Insulin-induced gene protein (INSIG)-dependent sterol regulation of Hmg2 endoplasmic reticulum-associated degradation (ERAD) in yeast.

Theesfeld CL, Hampton RY.

J Biol Chem. 2013 Mar 22;288(12):8519-30. doi: 10.1074/jbc.M112.404517. Epub 2013 Jan 10.

PMID:
23306196
[PubMed - indexed for MEDLINE]
Free PMC Article
12.

Regulation of squalene synthetase and squalene epoxidase activities in Saccharomyces cerevisiae.

M'Baya B, Fegueur M, Servouse M, Karst F.

Lipids. 1989 Dec;24(12):1020-3.

PMID:
2693869
[PubMed - indexed for MEDLINE]
13.

Overexpression of genes of the fatty acid biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae.

Shin GH, Veen M, Stahl U, Lang C.

Yeast. 2012 Sep;29(9):371-83. doi: 10.1002/yea.2916. Epub 2012 Aug 28.

PMID:
22926964
[PubMed - indexed for MEDLINE]
14.

Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae.

Asadollahi MA, Maury J, Schalk M, Clark A, Nielsen J.

Biotechnol Bioeng. 2010 May 1;106(1):86-96. doi: 10.1002/bit.22668.

PMID:
20091767
[PubMed - indexed for MEDLINE]
15.

[Regulation role of sterol C-24 methyltransferase and sterol C-8 isomerase in the ergosterol biosynthesis of Saccharomyces cerevisiae].

Zhang Z, He X, Li W, Lu Y, Wang Z, Zhang B.

Wei Sheng Wu Xue Bao. 2009 Aug;49(8):1063-8. Chinese.

PMID:
19835168
[PubMed - indexed for MEDLINE]
16.

Construction of squalene-accumulating Saccharomyces cerevisiae mutants by gene disruption through homologous recombination.

Kamimura N, Hidaka M, Masaki H, Uozumi T.

Appl Microbiol Biotechnol. 1994 Nov;42(2-3):353-7.

PMID:
7765777
[PubMed - indexed for MEDLINE]
17.

A genetic and pharmacological analysis of isoprenoid pathway by LC-MS/MS in fission yeast.

Takami T, Fang Y, Zhou X, Jaiseng W, Ma Y, Kuno T.

PLoS One. 2012;7(11):e49004. doi: 10.1371/journal.pone.0049004. Epub 2012 Nov 7.

PMID:
23145048
[PubMed - indexed for MEDLINE]
Free PMC Article
18.

Inhibition of sterol biosynthesis by ergosterol and cholesterol in Saccharomyces cerevisiae.

Pinto WJ, Lozano R, Nes WR.

Biochim Biophys Acta. 1985 Aug 22;836(1):89-95.

PMID:
3896318
[PubMed - indexed for MEDLINE]
19.
20.

Positive and negative regulation of a sterol biosynthetic gene (ERG3) in the post-squalene portion of the yeast ergosterol pathway.

Arthington-Skaggs BA, Crowell DN, Yang H, Sturley SL, Bard M.

FEBS Lett. 1996 Aug 26;392(2):161-5.

PMID:
8772195
[PubMed - indexed for MEDLINE]
Free Article

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk