Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 130

1.
2.

Gum arabic-coated magnetic nanoparticles for potential application in simultaneous magnetic targeting and tumor imaging.

Zhang L, Yu F, Cole AJ, Chertok B, David AE, Wang J, Yang VC.

AAPS J. 2009 Dec;11(4):693-9. doi: 10.1208/s12248-009-9151-y. Epub 2009 Oct 20.

3.

Magnetic brain tumor targeting and biodistribution of long-circulating PEG-modified, cross-linked starch-coated iron oxide nanoparticles.

Cole AJ, David AE, Wang J, Galbán CJ, Yang VC.

Biomaterials. 2011 Sep;32(26):6291-301. doi: 10.1016/j.biomaterials.2011.05.024.

4.
5.

Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting.

Cole AJ, David AE, Wang J, Galbán CJ, Hill HL, Yang VC.

Biomaterials. 2011 Mar;32(8):2183-93. doi: 10.1016/j.biomaterials.2010.11.040. Epub 2010 Dec 21.

6.

Glycol chitosan/heparin immobilized iron oxide nanoparticles with a tumor-targeting characteristic for magnetic resonance imaging.

Yuk SH, Oh KS, Cho SH, Lee BS, Kim SY, Kwak BK, Kim K, Kwon IC.

Biomacromolecules. 2011 Jun 13;12(6):2335-43. doi: 10.1021/bm200413a. Epub 2011 May 3.

PMID:
21506550
7.

Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors.

Chertok B, Moffat BA, David AE, Yu F, Bergemann C, Ross BD, Yang VC.

Biomaterials. 2008 Feb;29(4):487-96. Epub 2007 Oct 26.

8.

Magnetic tumor targeting of β-glucosidase immobilized iron oxide nanoparticles.

Zhou J, Zhang J, David AE, Yang VC.

Nanotechnology. 2013 Sep 20;24(37):375102. doi: 10.1088/0957-4484/24/37/375102. Epub 2013 Aug 23.

9.

Magnetic targeting of novel heparinized iron oxide nanoparticles evaluated in a 9L-glioma mouse model.

Zhang J, Shin MC, Yang VC.

Pharm Res. 2014 Mar;31(3):579-92. doi: 10.1007/s11095-013-1182-5. Epub 2013 Sep 25.

10.

Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration.

Chertok B, David AE, Yang VC.

Biomaterials. 2010 Aug;31(24):6317-24. doi: 10.1016/j.biomaterials.2010.04.043. Epub 2010 May 21.

11.

ICP-MS analysis of lanthanide-doped nanoparticles as a non-radiative, multiplex approach to quantify biodistribution and blood clearance.

Crayton SH, Elias DR, Al Zaki A, Cheng Z, Tsourkas A.

Biomaterials. 2012 Feb;33(5):1509-19. doi: 10.1016/j.biomaterials.2011.10.077. Epub 2011 Nov 17.

12.

Glioma selectivity of magnetically targeted nanoparticles: a role of abnormal tumor hydrodynamics.

Chertok B, David AE, Huang Y, Yang VC.

J Control Release. 2007 Oct 8;122(3):315-23. Epub 2007 Jun 2.

13.

Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats.

Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V.

Mol Pharm. 2008 Mar-Apr;5(2):316-27. doi: 10.1021/mp7001285. Epub 2008 Jan 25.

PMID:
18217714
14.

Magnetic resonance molecular imaging of post-stroke neuroinflammation with a P-selectin targeted iron oxide nanoparticle.

Jin AY, Tuor UI, Rushforth D, Filfil R, Kaur J, Ni F, Tomanek B, Barber PA.

Contrast Media Mol Imaging. 2009 Nov-Dec;4(6):305-11. doi: 10.1002/cmmi.292.

PMID:
19941323
15.

Brain tumor targeting of magnetic nanoparticles for potential drug delivery: effect of administration route and magnetic field topography.

Chertok B, David AE, Yang VC.

J Control Release. 2011 Nov 7;155(3):393-9. doi: 10.1016/j.jconrel.2011.06.033. Epub 2011 Jul 7.

16.

Mitoxantrone-iron oxide biodistribution in blood, tumor, spleen, and liver--magnetic nanoparticles in cancer treatment.

Krukemeyer MG, Krenn V, Jakobs M, Wagner W.

J Surg Res. 2012 Jun 1;175(1):35-43. doi: 10.1016/j.jss.2011.01.060. Epub 2011 Mar 2.

PMID:
21470623
17.

Pharmacokinetic parameters and tissue distribution of magnetic Fe(3)O(4) nanoparticles in mice.

Wang J, Chen Y, Chen B, Ding J, Xia G, Gao C, Cheng J, Jin N, Zhou Y, Li X, Tang M, Wang XM.

Int J Nanomedicine. 2010 Oct 21;5:861-6. doi: 10.2147/IJN.S13662.

18.

Study of the intra-arterial distribution of Fe₃O₄ nanoparticles in a model of colorectal neoplasm induced in rat liver by MRI and spectrometry.

Echevarria-Uraga JJ, García-Alonso I, Plazaola F, Insausti M, Etxebarria N, Saiz-López A, Fernández-Ruanova B.

Int J Nanomedicine. 2012;7:2399-410. doi: 10.2147/IJN.S31302. Epub 2012 May 9.

19.

An electron spin resonance study on alkylperoxyl radical in thin-sliced renal tissues from ferric nitrilotriacetate-treated rats: the effect of alpha-tocopherol feeding.

Toyokuni S, Masumizu T, Ozeki M, Kondo S, Hiroyasu M, Kohno M, Hiai H.

Free Radic Res. 2001 Sep;35(3):245-55.

PMID:
11697123
20.

Biochemical and biophysical methods for studying mitochondrial iron metabolism.

Holmes-Hampton GP, Tong WH, Rouault TA.

Methods Enzymol. 2014;547:275-307. doi: 10.1016/B978-0-12-801415-8.00015-1.

PMID:
25416363
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk