Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 153

1.

Structure and dynamics of NBD1 from CFTR characterized using crystallography and hydrogen/deuterium exchange mass spectrometry.

Lewis HA, Wang C, Zhao X, Hamuro Y, Conners K, Kearins MC, Lu F, Sauder JM, Molnar KS, Coales SJ, Maloney PC, Guggino WB, Wetmore DR, Weber PC, Hunt JF.

J Mol Biol. 2010 Feb 19;396(2):406-30. doi: 10.1016/j.jmb.2009.11.051. Epub 2009 Nov 26.

PMID:
19944699
2.

Impact of the deltaF508 mutation in first nucleotide-binding domain of human cystic fibrosis transmembrane conductance regulator on domain folding and structure.

Lewis HA, Zhao X, Wang C, Sauder JM, Rooney I, Noland BW, Lorimer D, Kearins MC, Conners K, Condon B, Maloney PC, Guggino WB, Hunt JF, Emtage S.

J Biol Chem. 2005 Jan 14;280(2):1346-53. Epub 2004 Nov 3.

3.
4.

Molecular dynamics analysis of the wild type and dF508 mutant structures of the human CFTR-nucleotide binding domain 1.

Bisignano P, Moran O.

Biochimie. 2010 Jan;92(1):51-7. doi: 10.1016/j.biochi.2009.09.007. Epub 2009 Sep 23.

PMID:
19781595
5.

The DeltaF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR.

Du K, Sharma M, Lukacs GL.

Nat Struct Mol Biol. 2005 Jan;12(1):17-25. Epub 2004 Dec 26.

PMID:
15619635
6.

The DeltaF508 mutation disrupts packing of the transmembrane segments of the cystic fibrosis transmembrane conductance regulator.

Chen EY, Bartlett MC, Loo TW, Clarke DM.

J Biol Chem. 2004 Sep 17;279(38):39620-7. Epub 2004 Jul 21.

7.

Integrated biophysical studies implicate partial unfolding of NBD1 of CFTR in the molecular pathogenesis of F508del cystic fibrosis.

Wang C, Protasevich I, Yang Z, Seehausen D, Skalak T, Zhao X, Atwell S, Spencer Emtage J, Wetmore DR, Brouillette CG, Hunt JF.

Protein Sci. 2010 Oct;19(10):1932-47. doi: 10.1002/pro.480.

8.

Correctors enhance maturation of DeltaF508 CFTR by promoting interactions between the two halves of the molecule.

Loo TW, Bartlett MC, Clarke DM.

Biochemistry. 2009 Oct 20;48(41):9882-90. doi: 10.1021/bi9004842.

PMID:
19761259
9.

Diminished self-chaperoning activity of the DeltaF508 mutant of CFTR results in protein misfolding.

Serohijos AW, Hegedus T, Riordan JR, Dokholyan NV.

PLoS Comput Biol. 2008 Feb 29;4(2):e1000008. doi: 10.1371/journal.pcbi.1000008.

10.

A novel natural product compound enhances cAMP-regulated chloride conductance of cells expressing CFTR[delta]F508.

deCarvalho AC, Ndi CP, Tsopmo A, Tane P, Ayafor J, Connolly JD, Teem JL.

Mol Med. 2002 Feb;8(2):75-87.

11.

Nucleotide-binding domain 1 of cystic fibrosis transmembrane conductance regulator production of a suitable protein for structural studies.

Duffieux F, Annereau JP, Boucher J, Miclet E, Pamlard O, Schneider M, Stoven V, Lallemand JY.

Eur J Biochem. 2000 Sep;267(17):5306-12.

12.

Inhibition of protein kinase CK2 closes the CFTR Cl channel, but has no effect on the cystic fibrosis mutant deltaF508-CFTR.

Treharne KJ, Xu Z, Chen JH, Best OG, Cassidy DM, Gruenert DC, Hegyi P, Gray MA, Sheppard DN, Kunzelmann K, Mehta A.

Cell Physiol Biochem. 2009;24(5-6):347-60. doi: 10.1159/000257427. Epub 2009 Nov 4.

13.

Nucleotide binding domains of human CFTR: a structural classification of critical residues and disease-causing mutations.

Eudes R, Lehn P, Férec C, Mornon JP, Callebaut I.

Cell Mol Life Sci. 2005 Sep;62(18):2112-23.

PMID:
16132229
14.

Modulation of protein kinase CK2 activity by fragments of CFTR encompassing F508 may reflect functional links with cystic fibrosis pathogenesis.

Pagano MA, Arrigoni G, Marin O, Sarno S, Meggio F, Treharne KJ, Mehta A, Pinna LA.

Biochemistry. 2008 Jul 29;47(30):7925-36. doi: 10.1021/bi800316z. Epub 2008 Jul 3.

15.

DeltaF508 mutation increases conformational flexibility of CFTR protein.

Wieczorek G, Zielenkiewicz P.

J Cyst Fibros. 2008 Jul;7(4):295-300. doi: 10.1016/j.jcf.2007.11.008. Epub 2008 Jan 29.

16.

Regulatory insertion removal restores maturation, stability and function of DeltaF508 CFTR.

Aleksandrov AA, Kota P, Aleksandrov LA, He L, Jensen T, Cui L, Gentzsch M, Dokholyan NV, Riordan JR.

J Mol Biol. 2010 Aug 13;401(2):194-210. doi: 10.1016/j.jmb.2010.06.019. Epub 2010 Jun 16.

17.

Correction of both NBD1 energetics and domain interface is required to restore ΔF508 CFTR folding and function.

Rabeh WM, Bossard F, Xu H, Okiyoneda T, Bagdany M, Mulvihill CM, Du K, di Bernardo S, Liu Y, Konermann L, Roldan A, Lukacs GL.

Cell. 2012 Jan 20;148(1-2):150-63. doi: 10.1016/j.cell.2011.11.024.

18.

The most common cystic fibrosis-associated mutation destabilizes the dimeric state of the nucleotide-binding domains of CFTR.

Jih KY, Li M, Hwang TC, Bompadre SG.

J Physiol. 2011 Jun 1;589(Pt 11):2719-31. doi: 10.1113/jphysiol.2010.202861. Epub 2011 Apr 11.

19.

Structures of a minimal human CFTR first nucleotide-binding domain as a monomer, head-to-tail homodimer, and pathogenic mutant.

Atwell S, Brouillette CG, Conners K, Emtage S, Gheyi T, Guggino WB, Hendle J, Hunt JF, Lewis HA, Lu F, Protasevich II, Rodgers LA, Romero R, Wasserman SR, Weber PC, Wetmore D, Zhang FF, Zhao X.

Protein Eng Des Sel. 2010 May;23(5):375-84. doi: 10.1093/protein/gzq004. Epub 2010 Feb 11.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk