Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 133

1.

Oxidative stress responses and lipid peroxidation damage are induced during dehydration in the production of dry active wine yeasts.

Garre E, Raginel F, Palacios A, Julien A, Matallana E.

Int J Food Microbiol. 2010 Jan 1;136(3):295-303. doi: 10.1016/j.ijfoodmicro.2009.10.018. Epub 2009 Oct 28.

PMID:
19914726
[PubMed - indexed for MEDLINE]
2.

Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth.

Pérez-Torrado R, Gómez-Pastor R, Larsson C, Matallana E.

Appl Microbiol Biotechnol. 2009 Jan;81(5):951-60. doi: 10.1007/s00253-008-1722-9. Epub 2008 Oct 3.

PMID:
18836715
[PubMed - indexed for MEDLINE]
3.

Reduction of oxidative cellular damage by overexpression of the thioredoxin TRX2 gene improves yield and quality of wine yeast dry active biomass.

Gómez-Pastor R, Pérez-Torrado R, Cabiscol E, Ros J, Matallana E.

Microb Cell Fact. 2010 Feb 12;9:9. doi: 10.1186/1475-2859-9-9. Erratum in: Microb Cell Fact. 2012;11:31.

PMID:
20152017
[PubMed - indexed for MEDLINE]
Free PMC Article
4.

Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.

Pérez-Torrado R, Bruno-Bárcena JM, Matallana E.

Appl Environ Microbiol. 2005 Nov;71(11):6831-7.

PMID:
16269716
[PubMed - indexed for MEDLINE]
Free PMC Article
5.

A novel approach for the improvement of stress resistance in wine yeasts.

Cardona F, Carrasco P, Pérez-Ortín JE, del Olmo Ml, Aranda A.

Int J Food Microbiol. 2007 Feb 28;114(1):83-91. Epub 2006 Dec 20.

PMID:
17187885
[PubMed - indexed for MEDLINE]
6.

Modification of the TRX2 gene dose in Saccharomyces cerevisiae affects hexokinase 2 gene regulation during wine yeast biomass production.

Gómez-Pastor R, Pérez-Torrado R, Matallana E.

Appl Microbiol Biotechnol. 2012 May;94(3):773-87. doi: 10.1007/s00253-011-3738-9. Epub 2012 Jan 6.

PMID:
22223102
[PubMed - indexed for MEDLINE]
7.

Quantitative analysis of wine yeast gene expression profiles under winemaking conditions.

Varela C, Cárdenas J, Melo F, Agosin E.

Yeast. 2005 Apr 15;22(5):369-83.

PMID:
15806604
[PubMed - indexed for MEDLINE]
8.

Adaptive evolution of wine yeast.

Querol A, Fernández-Espinar MT, del Olmo Ml, Barrio E.

Int J Food Microbiol. 2003 Sep 1;86(1-2):3-10. Review.

PMID:
12892918
[PubMed - indexed for MEDLINE]
9.

Analyses of stress resistance under laboratory conditions constitute a suitable criterion for wine yeast selection.

Zuzuarregui A, del Olmo M.

Antonie Van Leeuwenhoek. 2004 May;85(4):271-80.

PMID:
15028866
[PubMed - indexed for MEDLINE]
10.

Analysis of the stress resistance of commercial wine yeast strains.

Carrasco P, Querol A, del Olmo M.

Arch Microbiol. 2001 Jun;175(6):450-7.

PMID:
11491086
[PubMed - indexed for MEDLINE]
11.

Analysis of the expression of some stress induced genes in several commercial wine yeast strains at the beginning of vinification.

Zuzuarregui A, Carrasco P, Palacios A, Julien A, del Olmo M.

J Appl Microbiol. 2005;98(2):299-307.

PMID:
15659184
[PubMed - indexed for MEDLINE]
12.

Proteomic evolution of a wine yeast during the first hours of fermentation.

Salvadó Z, Chiva R, Rodríguez-Vargas S, Rández-Gil F, Mas A, Guillamón JM.

FEMS Yeast Res. 2008 Nov;8(7):1137-46. doi: 10.1111/j.1567-1364.2008.00389.x. Epub 2008 May 22.

PMID:
18503542
[PubMed - indexed for MEDLINE]
13.

Expression of stress response genes in wine strains with different fermentative behavior.

Zuzuarregui A, del Olmo ML.

FEMS Yeast Res. 2004 May;4(7):699-710. Erratum in: FEMS Yeast Res. 2004 Dec;5(3):297.

PMID:
15093773
[PubMed - indexed for MEDLINE]
14.

Stress response and expression patterns in wine fermentations of yeast genes induced at the diauxic shift.

Puig S, Pérez-Ortín JE.

Yeast. 2000 Jan 30;16(2):139-48.

PMID:
10641036
[PubMed - indexed for MEDLINE]
15.

Correlation between cell lipid content, gene expression and fermentative behaviour of two Saccharomyces cerevisiae wine strains.

Zara G, Bardi L, Belviso S, Farris GA, Zara S, Budroni M.

J Appl Microbiol. 2008 Mar;104(3):906-14. Epub 2007 Oct 25.

PMID:
17961155
[PubMed - indexed for MEDLINE]
16.

Thioredoxins are required for protection against a reductive stress in the yeast Saccharomyces cerevisiae.

Trotter EW, Grant CM.

Mol Microbiol. 2002 Nov;46(3):869-78.

PMID:
12410842
[PubMed - indexed for MEDLINE]
17.

An inverse correlation between stress resistance and stuck fermentations in wine yeasts. A molecular study.

Ivorra C, Pérez-Ortín JE, del Olmo M.

Biotechnol Bioeng. 1999 Sep 20;64(6):698-708.

PMID:
10417219
[PubMed - indexed for MEDLINE]
18.

Genetic improvement of Saccharomyces cerevisiae wine strains for enhancing cell viability after desiccation stress.

López-Martínez G, Pietrafesa R, Romano P, Cordero-Otero R, Capece A.

Yeast. 2013 Aug;30(8):319-30. doi: 10.1002/yea.2952. Epub 2013 May 22.

PMID:
23576041
[PubMed - indexed for MEDLINE]
19.

A systems biology perspective of wine fermentations.

Pizarro F, Vargas FA, Agosin E.

Yeast. 2007 Nov;24(11):977-91. Review.

PMID:
17899563
[PubMed - indexed for MEDLINE]
20.

Spontaneous and inoculated yeast populations dynamics and their effect on organoleptic characters of Vinsanto wine under different process conditions.

Domizio P, Lencioni L, Ciani M, Di Blasi S, Pontremolesi C, Sabatelli MP.

Int J Food Microbiol. 2007 Apr 20;115(3):281-9. Epub 2007 Jan 19.

PMID:
17307268
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk