Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 105

1.

Morphing methods to parameterize specimen-specific finite element model geometries.

Sigal IA, Yang H, Roberts MD, Downs JC.

J Biomech. 2010 Jan 19;43(2):254-62. doi: 10.1016/j.jbiomech.2009.08.036. Epub 2009 Oct 29.

PMID:
19878950
[PubMed - indexed for MEDLINE]
Free PMC Article
2.

Mesh-morphing algorithms for specimen-specific finite element modeling.

Sigal IA, Hardisty MR, Whyne CM.

J Biomech. 2008;41(7):1381-9. doi: 10.1016/j.jbiomech.2008.02.019. Epub 2008 Apr 7.

PMID:
18397789
[PubMed - indexed for MEDLINE]
3.

Mesh morphing and response surface analysis: quantifying sensitivity of vertebral mechanical behavior.

Sigal IA, Whyne CM.

Ann Biomed Eng. 2010 Jan;38(1):41-56. doi: 10.1007/s10439-009-9821-z. Epub 2009 Oct 27.

PMID:
19859809
[PubMed - indexed for MEDLINE]
4.

The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.

Papini M, Zdero R, Schemitsch EH, Zalzal P.

J Biomech Eng. 2007 Feb;129(1):12-9.

PMID:
17227093
[PubMed - indexed for MEDLINE]
5.

Evaluation of the generality and accuracy of a new mesh morphing procedure for the human femur.

Grassi L, Hraiech N, Schileo E, Ansaloni M, Rochette M, Viceconti M.

Med Eng Phys. 2011 Jan;33(1):112-20. doi: 10.1016/j.medengphy.2010.09.014. Epub 2010 Oct 30.

PMID:
21036655
[PubMed - indexed for MEDLINE]
6.

Comparison of computed tomography based parametric and patient-specific finite element models of the healthy and metastatic spine using a mesh-morphing algorithm.

O'Reilly MA, Whyne CM.

Spine (Phila Pa 1976). 2008 Aug 1;33(17):1876-81. doi: 10.1097/BRS.0b013e31817d9ce5.

PMID:
18670341
[PubMed - indexed for MEDLINE]
7.

Experimental validation of finite element model for proximal composite femur using optical measurements.

Grassi L, Väänänen SP, Amin Yavari S, Weinans H, Jurvelin JS, Zadpoor AA, Isaksson H.

J Mech Behav Biomed Mater. 2013 May;21:86-94. doi: 10.1016/j.jmbbm.2013.02.006. Epub 2013 Feb 19.

PMID:
23510970
[PubMed - indexed for MEDLINE]
8.

Geometric modeling of living tissue for subject-specific finite element analysis.

Tada M, Yoshida H, Mochimaru M.

Conf Proc IEEE Eng Med Biol Soc. 2006;Suppl:6639-42.

PMID:
17959473
[PubMed - indexed for MEDLINE]
9.

Development, validation, and application of a parametric pediatric head finite element model for impact simulations.

Li Z, Hu J, Reed MP, Rupp JD, Hoff CN, Zhang J, Cheng B.

Ann Biomed Eng. 2011 Dec;39(12):2984-97. doi: 10.1007/s10439-011-0409-z. Epub 2011 Sep 24. Erratum in: Ann Biomed Eng. 2013 Jan;41(1):215-20.

PMID:
21947736
[PubMed - indexed for MEDLINE]
10.

Biomechanics of the rostrum in crocodilians: a comparative analysis using finite-element modeling.

McHenry CR, Clausen PD, Daniel WJ, Meers MB, Pendharkar A.

Anat Rec A Discov Mol Cell Evol Biol. 2006 Aug;288(8):827-49.

PMID:
16835925
[PubMed - indexed for MEDLINE]
Free Article
11.

Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation.

Bourne BC, van der Meulen MC.

J Biomech. 2004 May;37(5):613-21.

PMID:
15046990
[PubMed - indexed for MEDLINE]
12.

The optic nerve head as a biomechanical structure: initial finite element modeling.

Bellezza AJ, Hart RT, Burgoyne CF.

Invest Ophthalmol Vis Sci. 2000 Sep;41(10):2991-3000.

PMID:
10967056
[PubMed - indexed for MEDLINE]
Free Article
13.

Subject-specific finite element simulation of the human femur considering inhomogeneous material properties: a straightforward method and convergence study.

Hölzer A, Schröder C, Woiczinski M, Sadoghi P, Scharpf A, Heimkes B, Jansson V.

Comput Methods Programs Biomed. 2013 Apr;110(1):82-8. doi: 10.1016/j.cmpb.2012.09.010. Epub 2012 Oct 17.

PMID:
23084242
[PubMed - indexed for MEDLINE]
14.

Modeling individual-specific human optic nerve head biomechanics. Part II: influence of material properties.

Sigal IA, Flanagan JG, Tertinegg I, Ethier CR.

Biomech Model Mechanobiol. 2009 Apr;8(2):99-109. doi: 10.1007/s10237-008-0119-0. Epub 2008 Feb 27.

PMID:
18301933
[PubMed - indexed for MEDLINE]
15.

The influence of material property and morphological parameters on specimen-specific finite element models of porcine vertebral bodies.

Wilcox RK.

J Biomech. 2007;40(3):669-73. Epub 2006 Apr 11.

PMID:
16584740
[PubMed - indexed for MEDLINE]
16.

Automated finite element analysis of excised human femora based on precision -QCT.

Merz B, Niederer P, Müller R, Rüegsegger P.

J Biomech Eng. 1996 Aug;118(3):387-90.

PMID:
8872261
[PubMed - indexed for MEDLINE]
17.

Sensitivity of periprosthetic stress-shielding to load and the bone density-modulus relationship in subject-specific finite element models.

Weinans H, Sumner DR, Igloria R, Natarajan RN.

J Biomech. 2000 Jul;33(7):809-17.

PMID:
10831755
[PubMed - indexed for MEDLINE]
18.

Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading.

Gardiner JC, Weiss JA.

J Orthop Res. 2003 Nov;21(6):1098-106.

PMID:
14554224
[PubMed - indexed for MEDLINE]
19.

Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties.

Taddei F, Martelli S, Reggiani B, Cristofolini L, Viceconti M.

IEEE Trans Biomed Eng. 2006 Nov;53(11):2194-200.

PMID:
17073324
[PubMed - indexed for MEDLINE]
20.

Material characterization of liver parenchyma using specimen-specific finite element models.

Untaroiu CD, Lu YC.

J Mech Behav Biomed Mater. 2013 Oct;26:11-22. doi: 10.1016/j.jmbbm.2013.05.013. Epub 2013 Jun 5.

PMID:
23800843
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk