Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 87


Loss of yeast peroxiredoxin Tsa1p induces genome instability through activation of the DNA damage checkpoint and elevation of dNTP levels.

Tang HM, Siu KL, Wong CM, Jin DY.

PLoS Genet. 2009 Oct;5(10):e1000697. doi: 10.1371/journal.pgen.1000697. Epub 2009 Oct 23.


Ixr1 is required for the expression of the ribonucleotide reductase Rnr1 and maintenance of dNTP pools.

Tsaponina O, Barsoum E, Aström SU, Chabes A.

PLoS Genet. 2011 May;7(5):e1002061. doi: 10.1371/journal.pgen.1002061. Epub 2011 May 5.


Loss of the thioredoxin reductase Trr1 suppresses the genomic instability of peroxiredoxin tsa1 mutants.

Ragu S, Dardalhon M, Sharma S, Iraqui I, Buhagiar-Labarchède G, Grondin V, Kienda G, Vernis L, Chanet R, Kolodner RD, Huang ME, Faye G.

PLoS One. 2014 Sep 23;9(9):e108123. doi: 10.1371/journal.pone.0108123. eCollection 2014.


Peroxiredoxin-null yeast cells are hypersensitive to oxidative stress and are genomically unstable.

Wong CM, Siu KL, Jin DY.

J Biol Chem. 2004 May 28;279(22):23207-13. Epub 2004 Mar 29.


Cooperation of yeast peroxiredoxins Tsa1p and Tsa2p in the cellular defense against oxidative and nitrosative stress.

Wong CM, Zhou Y, Ng RW, Kung Hf HF, Jin DY.

J Biol Chem. 2002 Feb 15;277(7):5385-94. Epub 2001 Dec 10.


Human peroxiredoxin PrxI is an orthologue of yeast Tsa1, capable of suppressing genome instability in Saccharomyces cerevisiae.

Iraqui I, Faye G, Ragu S, Masurel-Heneman A, Kolodner RD, Huang ME.

Cancer Res. 2008 Feb 15;68(4):1055-63. doi: 10.1158/0008-5472.CAN-07-2683.


Regulation of the yeast TSA1 peroxiredoxin by ZAP1 is an adaptive response to the oxidative stress of zinc deficiency.

Wu CY, Bird AJ, Winge DR, Eide DJ.

J Biol Chem. 2007 Jan 26;282(4):2184-95. Epub 2006 Nov 22.


Peroxiredoxin Tsa1 is the key peroxidase suppressing genome instability and protecting against cell death in Saccharomyces cerevisiae.

Iraqui I, Kienda G, Soeur J, Faye G, Baldacci G, Kolodner RD, Huang ME.

PLoS Genet. 2009 Jun;5(6):e1000524. doi: 10.1371/journal.pgen.1000524. Epub 2009 Jun 19.


Spontaneous DNA damage in Saccharomyces cerevisiae elicits phenotypic properties similar to cancer cells.

Evert BA, Salmon TB, Song B, Jingjing L, Siede W, Doetsch PW.

J Biol Chem. 2004 May 21;279(21):22585-94. Epub 2004 Mar 12.


Elevated dNTP levels suppress hyper-recombination in Saccharomyces cerevisiae S-phase checkpoint mutants.

Fasullo M, Tsaponina O, Sun M, Chabes A.

Nucleic Acids Res. 2010 Mar;38(4):1195-203. doi: 10.1093/nar/gkp1064. Epub 2009 Dec 3.


DNA-damage induction of RAD54 can be regulated independently of the RAD9- and DDC1-dependent checkpoints that regulate RNR2.

Walsh L, Schmuckli-Maurer J, Billinton N, Barker MG, Heyer WD, Walmsley RM.

Curr Genet. 2002 Jul;41(4):232-40. Epub 2002 Jun 27.


Docking onto chromatin via the Saccharomyces cerevisiae Rad9 Tudor domain.

Grenon M, Costelloe T, Jimeno S, O'Shaughnessy A, Fitzgerald J, Zgheib O, Degerth L, Lowndes NF.

Yeast. 2007 Feb;24(2):105-19.


DNA decay and limited Rad53 activation after liquid holding of UV-treated nucleotide excision repair deficient S. cerevisiae cells.

Giannattasio M, Lazzaro F, Siede W, Nunes E, Plevani P, Muzi-Falconi M.

DNA Repair (Amst). 2004 Dec 2;3(12):1591-9.


Different requirements for the association of ATR-ATRIP and 9-1-1 to the stalled replication forks.

Kanoh Y, Tamai K, Shirahige K.

Gene. 2006 Aug 1;377:88-95. Epub 2006 May 20.


Colon cancer-associated mutator DNA polymerase δ variant causes expansion of dNTP pools increasing its own infidelity.

Mertz TM, Sharma S, Chabes A, Shcherbakova PV.

Proc Natl Acad Sci U S A. 2015 May 12;112(19):E2467-76. doi: 10.1073/pnas.1422934112. Epub 2015 Mar 31.

Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk