Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 126

1.

Interplay between calcium and reactive oxygen/nitrogen species: an essential paradigm for vascular smooth muscle signaling.

Trebak M, Ginnan R, Singer HA, Jourd'heuil D.

Antioxid Redox Signal. 2010 Mar 1;12(5):657-74. doi: 10.1089/ars.2009.2842. Review.

2.

The non-excitable smooth muscle: calcium signaling and phenotypic switching during vascular disease.

House SJ, Potier M, Bisaillon J, Singer HA, Trebak M.

Pflugers Arch. 2008 Aug;456(5):769-85. doi: 10.1007/s00424-008-0491-8. Epub 2008 Mar 26. Review.

3.

Role of oxidants on calcium and sodium movement in healthy and diseased cardiac myocytes.

Sag CM, Wagner S, Maier LS.

Free Radic Biol Med. 2013 Oct;63:338-49. doi: 10.1016/j.freeradbiomed.2013.05.035. Epub 2013 Jun 1. Review.

PMID:
23732518
4.

Intricate interaction between store-operated calcium entry and calcium-activated chloride channels in pulmonary artery smooth muscle cells.

Forrest AS, Angermann JE, Raghunathan R, Lachendro C, Greenwood IA, Leblanc N.

Adv Exp Med Biol. 2010;661:31-55. doi: 10.1007/978-1-60761-500-2_3.

PMID:
20204722
5.

ROS-dependent signaling mechanisms for hypoxic Ca(2+) responses in pulmonary artery myocytes.

Wang YX, Zheng YM.

Antioxid Redox Signal. 2010 Mar 1;12(5):611-23. doi: 10.1089/ars.2009.2877. Review.

6.

Orai1, a critical component of store-operated Ca2+ entry, is functionally associated with Na+/Ca2+ exchanger and plasma membrane Ca2+ pump in proliferating human arterial myocytes.

Baryshnikov SG, Pulina MV, Zulian A, Linde CI, Golovina VA.

Am J Physiol Cell Physiol. 2009 Nov;297(5):C1103-12. doi: 10.1152/ajpcell.00283.2009. Epub 2009 Aug 12.

7.

Role of ROS signaling in differential hypoxic Ca2+ and contractile responses in pulmonary and systemic vascular smooth muscle cells.

Wang YX, Zheng YM.

Respir Physiol Neurobiol. 2010 Dec 31;174(3):192-200. doi: 10.1016/j.resp.2010.08.008. Epub 2010 Aug 14.

8.

Urotensin-II promotes vascular smooth muscle cell proliferation through store-operated calcium entry and EGFR transactivation.

Rodríguez-Moyano M, Díaz I, Dionisio N, Zhang X, Avila-Medina J, Calderón-Sánchez E, Trebak M, Rosado JA, Ordóñez A, Smani T.

Cardiovasc Res. 2013 Nov 1;100(2):297-306. doi: 10.1093/cvr/cvt196. Epub 2013 Aug 9.

9.

Role of reactive oxygen species and redox in regulating the function of transient receptor potential channels.

Song MY, Makino A, Yuan JX.

Antioxid Redox Signal. 2011 Sep 15;15(6):1549-65. doi: 10.1089/ars.2010.3648. Epub 2011 Apr 11. Review.

10.

Redox regulation of protein damage in plasma.

Griffiths HR, Dias IH, Willetts RS, Devitt A.

Redox Biol. 2014 Jan 20;2:430-5. doi: 10.1016/j.redox.2014.01.010. eCollection 2014. Review.

11.

Regulation of smooth muscle by inducible nitric oxide synthase and NADPH oxidase in vascular proliferative diseases.

Ginnan R, Guikema BJ, Halligan KE, Singer HA, Jourd'heuil D.

Free Radic Biol Med. 2008 Apr 1;44(7):1232-45. doi: 10.1016/j.freeradbiomed.2007.12.025. Epub 2008 Jan 22. Review.

12.

Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species.

Daiber A.

Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):897-906. doi: 10.1016/j.bbabio.2010.01.032. Epub 2010 Feb 1. Review.

13.

Reactive oxygen species signaling in pulmonary vascular smooth muscle.

Perez-Vizcaino F, Cogolludo A, Moreno L.

Respir Physiol Neurobiol. 2010 Dec 31;174(3):212-20. doi: 10.1016/j.resp.2010.08.009. Epub 2010 Aug 24. Review.

PMID:
20797450
14.

Mechanical stretch-induced activation of ROS/RNS signaling in striated muscle.

Ward CW, Prosser BL, Lederer WJ.

Antioxid Redox Signal. 2014 Feb 20;20(6):929-36. doi: 10.1089/ars.2013.5517. Epub 2014 Jan 3. Review.

15.

Oxidative activation of the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) regulates vascular smooth muscle migration and apoptosis.

Zhu LJ, Klutho PJ, Scott JA, Xie L, Luczak ED, Dibbern ME, Prasad AM, Jaffer OA, Venema AN, Nguyen EK, Guan X, Anderson ME, Grumbach IM.

Vascul Pharmacol. 2014 Feb;60(2):75-83. doi: 10.1016/j.vph.2014.01.001. Epub 2014 Jan 10.

16.

Nox2 mediates high fat high sucrose diet-induced nitric oxide dysfunction and inflammation in aortic smooth muscle cells.

Qin Z, Hou X, Weisbrod RM, Seta F, Cohen RA, Tong X.

J Mol Cell Cardiol. 2014 Jul;72:56-63. doi: 10.1016/j.yjmcc.2014.02.019. Epub 2014 Mar 11.

17.

Increases in mitochondrial reactive oxygen species trigger hypoxia-induced calcium responses in pulmonary artery smooth muscle cells.

Waypa GB, Guzy R, Mungai PT, Mack MM, Marks JD, Roe MW, Schumacker PT.

Circ Res. 2006 Oct 27;99(9):970-8. Epub 2006 Sep 28.

18.

NADPH oxidase 2 mediates angiotensin II-dependent cellular arrhythmias via PKA and CaMKII.

Wagner S, Dantz C, Flebbe H, Azizian A, Sag CM, Engels S, Möllencamp J, Dybkova N, Islam T, Shah AM, Maier LS.

J Mol Cell Cardiol. 2014 Oct;75:206-15. doi: 10.1016/j.yjmcc.2014.07.011. Epub 2014 Jul 27.

PMID:
25073061
19.

Redox signaling in hypertension.

Paravicini TM, Touyz RM.

Cardiovasc Res. 2006 Jul 15;71(2):247-58. Epub 2006 May 9. Review.

20.

CD38 mediates angiotensin II-induced intracellular Ca(2+) release in rat pulmonary arterial smooth muscle cells.

Lee S, Paudel O, Jiang Y, Yang XR, Sham JS.

Am J Respir Cell Mol Biol. 2015 Mar;52(3):332-41. doi: 10.1165/rcmb.2014-0141OC.

Items per page

Supplemental Content

Write to the Help Desk