Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

The cell-intrinsic requirement of Sox6 for cortical interneuron development.

Batista-Brito R, Rossignol E, Hjerling-Leffler J, Denaxa M, Wegner M, Lefebvre V, Pachnis V, Fishell G.

Neuron. 2009 Aug 27;63(4):466-81. doi: 10.1016/j.neuron.2009.08.005.

2.

SOX6 controls dorsal progenitor identity and interneuron diversity during neocortical development.

Azim E, Jabaudon D, Fame RM, Macklis JD.

Nat Neurosci. 2009 Oct;12(10):1238-47. doi: 10.1038/nn.2387. Epub 2009 Aug 5.

3.

Satb1 is an activity-modulated transcription factor required for the terminal differentiation and connectivity of medial ganglionic eminence-derived cortical interneurons.

Close J, Xu H, De Marco GarcĂ­a N, Batista-Brito R, Rossignol E, Rudy B, Fishell G.

J Neurosci. 2012 Dec 5;32(49):17690-705. doi: 10.1523/JNEUROSCI.3583-12.2012.

4.

Lhx6 directly regulates Arx and CXCR7 to determine cortical interneuron fate and laminar position.

Vogt D, Hunt RF, Mandal S, Sandberg M, Silberberg SN, Nagasawa T, Yang Z, Baraban SC, Rubenstein JL.

Neuron. 2014 Apr 16;82(2):350-64. doi: 10.1016/j.neuron.2014.02.030.

5.

Lhx6 activity is required for the normal migration and specification of cortical interneuron subtypes.

Liodis P, Denaxa M, Grigoriou M, Akufo-Addo C, Yanagawa Y, Pachnis V.

J Neurosci. 2007 Mar 21;27(12):3078-89.

6.

NKX2.1 specifies cortical interneuron fate by activating Lhx6.

Du T, Xu Q, Ocbina PJ, Anderson SA.

Development. 2008 Apr;135(8):1559-67. doi: 10.1242/dev.015123. Epub 2008 Mar 13.

7.

Origins of cortical interneuron subtypes.

Xu Q, Cobos I, De La Cruz E, Rubenstein JL, Anderson SA.

J Neurosci. 2004 Mar 17;24(11):2612-22.

8.

The LIM homeodomain protein Lhx6 regulates maturation of interneurons and network excitability in the mammalian cortex.

Neves G, Shah MM, Liodis P, Achimastou A, Denaxa M, Roalfe G, Sesay A, Walker MC, Pachnis V.

Cereb Cortex. 2013 Aug;23(8):1811-23. doi: 10.1093/cercor/bhs159. Epub 2012 Jun 17.

9.

Perspectives on the developmental origins of cortical interneuron diversity.

Fishell G.

Novartis Found Symp. 2007;288:21-35; discussion 35-44, 96-8. Review.

PMID:
18494250
10.

NPAS1 represses the generation of specific subtypes of cortical interneurons.

Stanco A, Pla R, Vogt D, Chen Y, Mandal S, Walker J, Hunt RF, Lindtner S, Erdman CA, Pieper AA, Hamilton SP, Xu D, Baraban SC, Rubenstein JL.

Neuron. 2014 Dec 3;84(5):940-53. doi: 10.1016/j.neuron.2014.10.040. Epub 2014 Nov 20.

11.

Distinct molecular pathways for development of telencephalic interneuron subtypes revealed through analysis of Lhx6 mutants.

Zhao Y, Flandin P, Long JE, Cuesta MD, Westphal H, Rubenstein JL.

J Comp Neurol. 2008 Sep 1;510(1):79-99. doi: 10.1002/cne.21772.

12.

Gene expression in cortical interneuron precursors is prescient of their mature function.

Batista-Brito R, Machold R, Klein C, Fishell G.

Cereb Cortex. 2008 Oct;18(10):2306-17. doi: 10.1093/cercor/bhm258. Epub 2008 Feb 3.

13.

EphA/ephrin A reverse signaling promotes the migration of cortical interneurons from the medial ganglionic eminence.

Steinecke A, Gampe C, Zimmer G, Rudolph J, Bolz J.

Development. 2014 Jan;141(2):460-71. doi: 10.1242/dev.101691.

14.

Maturation-promoting activity of SATB1 in MGE-derived cortical interneurons.

Denaxa M, Kalaitzidou M, Garefalaki A, Achimastou A, Lasrado R, Maes T, Pachnis V.

Cell Rep. 2012 Nov 29;2(5):1351-62. doi: 10.1016/j.celrep.2012.10.003. Epub 2012 Nov 8.

15.

Cortical interneurons require Jnk1 to enter and navigate the developing cerebral cortex.

Myers AK, Meechan DW, Adney DR, Tucker ES.

J Neurosci. 2014 Jun 4;34(23):7787-801. doi: 10.1523/JNEUROSCI.4695-13.2014.

16.
17.

Loss of COUP-TFI alters the balance between caudal ganglionic eminence- and medial ganglionic eminence-derived cortical interneurons and results in resistance to epilepsy.

Lodato S, Tomassy GS, De Leonibus E, Uzcategui YG, Andolfi G, Armentano M, Touzot A, Gaztelu JM, Arlotta P, Menendez de la Prida L, Studer M.

J Neurosci. 2011 Mar 23;31(12):4650-62. doi: 10.1523/JNEUROSCI.6580-10.2011.

18.

Sonic hedgehog maintains the identity of cortical interneuron progenitors in the ventral telencephalon.

Xu Q, Wonders CP, Anderson SA.

Development. 2005 Nov;132(22):4987-98. Epub 2005 Oct 12.

19.

Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors.

Miyoshi G, Butt SJ, Takebayashi H, Fishell G.

J Neurosci. 2007 Jul 18;27(29):7786-98.

20.

A blueprint for the spatiotemporal origins of mouse hippocampal interneuron diversity.

Tricoire L, Pelkey KA, Erkkila BE, Jeffries BW, Yuan X, McBain CJ.

J Neurosci. 2011 Jul 27;31(30):10948-70. doi: 10.1523/JNEUROSCI.0323-11.2011.

Items per page

Supplemental Content

Write to the Help Desk