Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 85

1.

Genetic manipulation of palmitoylethanolamide production and inactivation in Saccharomyces cerevisiae.

Muccioli GG, Sia A, Muchowski PJ, Stella N.

PLoS One. 2009 Jun 16;4(6):e5942. doi: 10.1371/journal.pone.0005942.

PMID:
19529773
[PubMed - indexed for MEDLINE]
Free PMC Article
2.

Microglia produce and hydrolyze palmitoylethanolamide.

Muccioli GG, Stella N.

Neuropharmacology. 2008 Jan;54(1):16-22. Epub 2007 Jun 2.

PMID:
17631917
[PubMed - indexed for MEDLINE]
Free PMC Article
3.

Coregulation of starch degradation and dimorphism in the yeast Saccharomyces cerevisiae.

Vivier MA, Lambrechts MG, Pretorius IS.

Crit Rev Biochem Mol Biol. 1997;32(5):405-35. Review.

PMID:
9383611
[PubMed - indexed for MEDLINE]
4.

Measurement of palmitoylethanolamide and other N-acylethanolamines during physiological and pathological conditions.

Balvers MG, Verhoeckx KC, Meijerink J, Wortelboer HM, Witkamp RF.

CNS Neurol Disord Drug Targets. 2013 Feb 1;12(1):23-33. Review.

PMID:
23394528
[PubMed - indexed for MEDLINE]
5.

The Saccharomyces cerevisiae homologue YPA1 of the mammalian phosphotyrosyl phosphatase activator of protein phosphatase 2A controls progression through the G1 phase of the yeast cell cycle.

Van Hoof C, Janssens V, De Baere I, de Winde JH, Winderickx J, Dumortier F, Thevelein JM, Merlevede W, Goris J.

J Mol Biol. 2000 Sep 8;302(1):103-20.

PMID:
10964564
[PubMed - indexed for MEDLINE]
6.

Selective N-acylethanolamine-hydrolyzing acid amidase inhibition reveals a key role for endogenous palmitoylethanolamide in inflammation.

Solorzano C, Zhu C, Battista N, Astarita G, Lodola A, Rivara S, Mor M, Russo R, Maccarrone M, Antonietti F, Duranti A, Tontini A, Cuzzocrea S, Tarzia G, Piomelli D.

Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20966-71. doi: 10.1073/pnas.0907417106. Epub 2009 Nov 19.

PMID:
19926854
[PubMed - indexed for MEDLINE]
Free PMC Article
7.

A genomic study of the bipolar bud site selection pattern in Saccharomyces cerevisiae.

Ni L, Snyder M.

Mol Biol Cell. 2001 Jul;12(7):2147-70.

PMID:
11452010
[PubMed - indexed for MEDLINE]
Free PMC Article
8.

Potassium supply and homeostasis in the osmotolerant non-conventional yeasts Zygosaccharomyces rouxii differ from Saccharomyces cerevisiae.

Stříbný J, Kinclová-Zimmermannová O, Sychrová H.

Curr Genet. 2012 Dec;58(5-6):255-64. doi: 10.1007/s00294-012-0381-7. Epub 2012 Sep 5.

PMID:
22948499
[PubMed - indexed for MEDLINE]
9.

The Arf-GTPase-activating protein Gcs1p is essential for sporulation and regulates the phospholipase D Spo14p.

Connolly JE, Engebrecht J.

Eukaryot Cell. 2006 Jan;5(1):112-24.

PMID:
16400173
[PubMed - indexed for MEDLINE]
Free PMC Article
10.

Mutation of RGA1, which encodes a putative GTPase-activating protein for the polarity-establishment protein Cdc42p, activates the pheromone-response pathway in the yeast Saccharomyces cerevisiae.

Stevenson BJ, Ferguson B, De Virgilio C, Bi E, Pringle JR, Ammerer G, Sprague GF Jr.

Genes Dev. 1995 Dec 1;9(23):2949-63.

PMID:
7498791
[PubMed - indexed for MEDLINE]
Free Article
11.

New aspects on phosphate sensing and signalling in Saccharomyces cerevisiae.

Mouillon JM, Persson BL.

FEMS Yeast Res. 2006 Mar;6(2):171-6. Review.

PMID:
16487340
[PubMed - indexed for MEDLINE]
12.
13.

Phospholipase D1 is required for efficient mating projection formation in Saccharomyces cerevisiae.

Hairfield ML, Ayers AB, Dolan JW.

FEMS Yeast Res. 2001 Dec;1(3):225-32.

PMID:
12702348
[PubMed - indexed for MEDLINE]
14.

Saccharomyces cerevisiae plasma membrane nutrient sensors and their role in PKA signaling.

Rubio-Texeira M, Van Zeebroeck G, Voordeckers K, Thevelein JM.

FEMS Yeast Res. 2010 Mar;10(2):134-49. doi: 10.1111/j.1567-1364.2009.00587.x. Epub 2009 Oct 17. Review.

PMID:
19849717
[PubMed - indexed for MEDLINE]
15.

Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae.

Daum G, Lees ND, Bard M, Dickson R.

Yeast. 1998 Dec;14(16):1471-510. Review.

PMID:
9885152
[PubMed - indexed for MEDLINE]
16.

Role of Cdc42p in pheromone-stimulated signal transduction in Saccharomyces cerevisiae.

Moskow JJ, Gladfelter AS, Lamson RE, Pryciak PM, Lew DJ.

Mol Cell Biol. 2000 Oct;20(20):7559-71.

PMID:
11003652
[PubMed - indexed for MEDLINE]
Free PMC Article
17.

Palmitoylethanolamide inhibits the expression of fatty acid amide hydrolase and enhances the anti-proliferative effect of anandamide in human breast cancer cells.

Di Marzo V, Melck D, Orlando P, Bisogno T, Zagoory O, Bifulco M, Vogel Z, De Petrocellis L.

Biochem J. 2001 Aug 15;358(Pt 1):249-55.

PMID:
11485574
[PubMed - indexed for MEDLINE]
Free PMC Article
18.

Studying phospholipid metabolism using yeast systematic and chemical genetics.

Fairn GD, McMaster CR.

Methods. 2005 Jun;36(2):102-8.

PMID:
15893935
[PubMed - indexed for MEDLINE]
19.

Identification of novel, evolutionarily conserved Cdc42p-interacting proteins and of redundant pathways linking Cdc24p and Cdc42p to actin polarization in yeast.

Bi E, Chiavetta JB, Chen H, Chen GC, Chan CS, Pringle JR.

Mol Biol Cell. 2000 Feb;11(2):773-93.

PMID:
10679030
[PubMed - indexed for MEDLINE]
Free PMC Article
20.

Msn1p/Mss10p, Mss11p and Muc1p/Flo11p are part of a signal transduction pathway downstream of Mep2p regulating invasive growth and pseudohyphal differentiation in Saccharomyces cerevisiae.

Gagiano M, van Dyk D, Bauer FF, Lambrechts MG, Pretorius IS.

Mol Microbiol. 1999 Jan;31(1):103-16.

PMID:
9987114
[PubMed - indexed for MEDLINE]
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk