Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 143

1.

Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering.

Perney NM, Baumberg JJ, Zoorob ME, Charlton MD, Mahnkopf S, Netti CM.

Opt Express. 2006 Jan 23;14(2):847-57.

PMID:
19503404
2.

Tuning plasmons on nano-structured substrates for NIR-SERS.

Mahajan S, Abdelsalam M, Suguwara Y, Cintra S, Russell A, Baumberg J, Bartlett P.

Phys Chem Chem Phys. 2007 Jan 7;9(1):104-9. Epub 2006 Nov 23.

PMID:
17164891
3.

Localized surface plasmons, surface plasmon polaritons, and their coupling in 2D metallic array for SERS.

Du L, Zhang X, Mei T, Yuan X.

Opt Express. 2010 Feb 1;18(3):1959-65. doi: 10.1364/OE.18.001959.

PMID:
20174025
4.

Disposable gold coated pyramidal SERS sensor on the plastic platform.

Oo SZ, Siitonen S, Kontturi V, Eustace DA, Charlton MD.

Opt Express. 2016 Jan 11;24(1):724-31. doi: 10.1364/OE.24.000724.

PMID:
26832301
5.

Assessing the Location of Surface Plasmons Over Nanotriangle and Nanohole Arrays of Different Size and Periodicity.

Correia-Ledo D, Gibson KF, Dhawan A, Couture M, Vo-Dinh T, Graham D, Masson JF.

J Phys Chem C Nanomater Interfaces. 2012 Mar 29;116(12):6884-6892.

6.

Effects of the tip shape on the localized field enhancement and far field radiation pattern of the plasmonic inverted pyramidal nanostructures with the tips for surface-enhanced Raman scattering.

Cheng HH, Chen SW, Chang YY, Chu JY, Lin DZ, Chen YP, Li JH.

Opt Express. 2011 Oct 24;19(22):22125-41. doi: 10.1364/OE.19.022125.

PMID:
22109056
7.

Near-field diffraction in a two-dimensional V-groove and its role in SERS.

Mechler M, Kukhlevsky SV, Mechler A, McNaughton D.

Phys Chem Chem Phys. 2011 Dec 14;13(46):20772-8. doi: 10.1039/c1cp21750j. Epub 2011 Oct 14.

PMID:
21997130
8.

Investigation on the second part of the electromagnetic SERS enhancement and resulting fabrication strategies of anisotropic plasmonic arrays.

Cialla D, Petschulat J, Hübner U, Schneidewind H, Zeisberger M, Mattheis R, Pertsch T, Schmitt M, Möller R, Popp J.

Chemphyschem. 2010 Jun 21;11(9):1918-24. doi: 10.1002/cphc.200901009.

PMID:
20401896
9.

Focusing plasmons in nanoslits for surface-enhanced Raman scattering.

Chen C, Hutchison JA, Van Dorpe P, Kox R, De Vlaminck I, Uji-I H, Hofkens J, Lagae L, Maes G, Borghs G.

Small. 2009 Dec;5(24):2876-82. doi: 10.1002/smll.200901312.

PMID:
19816878
10.

Plasmonic band gap structures for surface-enhanced Raman scattering.

Kocabas A, Ertas G, Senlik SS, Aydinli A.

Opt Express. 2008 Aug 18;16(17):12469-77.

PMID:
18711483
11.

Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model.

Chu Y, Wang D, Zhu W, Crozier KB.

Opt Express. 2011 Aug 1;19(16):14919-28. doi: 10.1364/OE.19.014919.

PMID:
21934853
12.

Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays.

Yu Q, Braswell S, Christin B, Xu J, Wallace PM, Gong H, Kaminsky D.

Nanotechnology. 2010 Sep 3;21(35):355301. doi: 10.1088/0957-4484/21/35/355301. Epub 2010 Aug 4.

PMID:
20683142
13.

Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods.

Hossain MK, Kitahama Y, Huang GG, Han X, Ozaki Y.

Anal Bioanal Chem. 2009 Aug;394(7):1747-60. doi: 10.1007/s00216-009-2762-4. Epub 2009 Apr 22. Review.

PMID:
19384546
14.

Hyper-Raman scattering enhanced by anisotropic dimer plasmons on artificial nanostructures.

Ikeda K, Takase M, Sawai Y, Nabika H, Murakoshi K, Uosaki K.

J Chem Phys. 2007 Sep 21;127(11):111103.

PMID:
17887818
15.

Particle-on-Film Gap Plasmons on Antireflective ZnO Nanocone Arrays for Molecular-Level Surface-Enhanced Raman Scattering Sensors.

Lee Y, Lee J, Lee TK, Park J, Ha M, Kwak SK, Ko H.

ACS Appl Mater Interfaces. 2015 Dec 9;7(48):26421-9. doi: 10.1021/acsami.5b09947. Epub 2015 Nov 25.

PMID:
26575302
16.

Surface-enhanced Raman spectroscopy of graphene.

Schedin F, Lidorikis E, Lombardo A, Kravets VG, Geim AK, Grigorenko AN, Novoselov KS, Ferrari AC.

ACS Nano. 2010 Oct 26;4(10):5617-26. doi: 10.1021/nn1010842.

PMID:
20857921
17.

Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering.

Wang AX, Kong X.

Materials (Basel). 2015 Jun;8(6):3024-3052. Epub 2015 May 28.

18.

From single to multiple Ag-layer modification of Au nanocavity substrates: a tunable probe of the chemical surface-enhanced Raman scattering mechanism.

Tognalli NG, Cortés E, Hernández-Nieves AD, Carro P, Usaj G, Balseiro CA, Vela ME, Salvarezza RC, Fainstein A.

ACS Nano. 2011 Jul 26;5(7):5433-43. doi: 10.1021/nn200567m. Epub 2011 Jun 23.

PMID:
21675769
19.

The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering.

Cade NI, Ritman-Meer T, Kwaka K, Richards D.

Nanotechnology. 2009 Jul 15;20(28):285201. doi: 10.1088/0957-4484/20/28/285201. Epub 2009 Jun 23.

PMID:
19546490
20.

Dependence of surface enhanced Raman scattering on the plasmonic template periodicity.

Mandal P, Ramakrishna SA.

Opt Lett. 2011 Sep 15;36(18):3705-7. doi: 10.1364/OL.36.003705.

PMID:
21931439
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk