Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 100

Similar articles for PubMed (Select 19259247)

1.

Retinal tumor imaging and volume quantification in mouse model using spectral-domain optical coherence tomography.

Ruggeri M, Tsechpenakis G, Jiao S, Jockovich ME, Cebulla C, Hernandez E, Murray TG, Puliafito CA.

Opt Express. 2009 Mar 2;17(5):4074-83.

2.

In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography.

Ruggeri M, Wehbe H, Jiao S, Gregori G, Jockovich ME, Hackam A, Duan Y, Puliafito CA.

Invest Ophthalmol Vis Sci. 2007 Apr;48(4):1808-14.

PMID:
17389515
3.

Automatic retinal vessel segmentation based on active contours method in Doppler spectral-domain optical coherence tomography.

Liu W, Liu T, Song W, Yi J, Zhang HF.

J Biomed Opt. 2013 Jan;18(1):16002. doi: 10.1117/1.JBO.18.1.016002.

4.

Paclitaxel in the treatment of retinal tumors of LH beta-Tag murine transgenic model of retinoblastoma.

Suárez F, Jockovich ME, Hernandez E, Feuer W, Parel JM, Murray TG.

Invest Ophthalmol Vis Sci. 2007 Aug;48(8):3437-40.

PMID:
17652710
5.

Monitoring mouse retinal degeneration with high-resolution spectral-domain optical coherence tomography.

Kim KH, Puoris'haag M, Maguluri GN, Umino Y, Cusato K, Barlow RB, de Boer JF.

J Vis. 2008 Jan 24;8(1):17.1-11. doi: 10.1167/8.1.17.

PMID:
18318620
6.

Optical coherence tomography for live phenotypic analysis of embryonic ocular structures in mouse models.

Larina IV, Syed SH, Sudheendran N, Overbeek PA, Dickinson ME, Larin KV.

J Biomed Opt. 2012 Aug;17(8):081410-1. doi: 10.1117/1.JBO.17.8.081410.

7.

Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography.

Srinivasan VJ, Ko TH, Wojtkowski M, Carvalho M, Clermont A, Bursell SE, Song QH, Lem J, Duker JS, Schuman JS, Fujimoto JG.

Invest Ophthalmol Vis Sci. 2006 Dec;47(12):5522-8.

8.

Subconjunctival carboplatin in fibrin sealant in the treatment of transgenic murine retinoblastoma.

Van Quill KR, Dioguardi PK, Tong CT, Gilbert JA, Aaberg TM Jr, Grossniklaus HE, Edelhauser HF, O'Brien JM.

Ophthalmology. 2005 Jun;112(6):1151-8.

PMID:
15885791
9.

Quantitative analysis of tumor size in a murine model of retinoblastoma.

Dimaras H, Marchong MN, Gallie BL.

Ophthalmic Genet. 2009 Jun;30(2):84-90. doi: 10.1080/13816810902721439.

PMID:
19373679
10.

Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device.

Hahn P, Migacz J, O'Donnell R, Day S, Lee A, Lin P, Vann R, Kuo A, Fekrat S, Mruthyunjaya P, Postel EA, Izatt JA, Toth CA.

Retina. 2013 Jul-Aug;33(7):1328-37. doi: 10.1097/IAE.0b013e3182831293.

11.

Thickness profiles of retinal layers by optical coherence tomography image segmentation.

Bagci AM, Shahidi M, Ansari R, Blair M, Blair NP, Zelkha R.

Am J Ophthalmol. 2008 Nov;146(5):679-87. doi: 10.1016/j.ajo.2008.06.010. Epub 2008 Aug 15.

12.

Retinoblastoma.

Villegas VM, Hess DJ, Wildner A, Gold AS, Murray TG.

Curr Opin Ophthalmol. 2013 Nov;24(6):581-8. doi: 10.1097/ICU.0000000000000002. Review.

PMID:
24100372
13.

Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach.

Yazdanpanah A, Hamarneh G, Smith BR, Sarunic MV.

IEEE Trans Med Imaging. 2011 Feb;30(2):484-96. doi: 10.1109/TMI.2010.2087390. Epub 2010 Oct 14.

PMID:
20952331
14.

Long-term characterization of retinal degeneration in rd1 and rd10 mice using spectral domain optical coherence tomography.

Pennesi ME, Michaels KV, Magee SS, Maricle A, Davin SP, Garg AK, Gale MJ, Tu DC, Wen Y, Erker LR, Francis PJ.

Invest Ophthalmol Vis Sci. 2012 Jul 10;53(8):4644-56. doi: 10.1167/iovs.12-9611.

15.

Multi-parametric imaging of murine brain using spectral and time domain optical coherence tomography.

Bukowska D, Ruminski D, Szlag D, Grulkowski I, Wlodarczyk J, Szkulmowski M, Wilczynski G, Gorczynska I, Wojtkowski M.

J Biomed Opt. 2012 Oct;17(10):101515. doi: 10.1117/1.JBO.17.10.101515.

PMID:
23223991
16.

FloatingCanvas: quantification of 3D retinal structures from spectral-domain optical coherence tomography.

Zhu H, Crabb DP, Schlottmann PG, Ho T, Garway-Heath DF.

Opt Express. 2010 Nov 22;18(24):24595-610. doi: 10.1364/OE.18.024595.

PMID:
21164806
17.

Longitudinal study of retinal degeneration in a rat using spectral domain optical coherence tomography.

Sarunic MV, Yazdanpanah A, Gibson E, Xu J, Bai Y, Lee S, Saragovi HU, Beg MF.

Opt Express. 2010 Oct 25;18(22):23435-41. doi: 10.1364/OE.18.023435.

PMID:
21164686
18.

Adaptive optics optical coherence tomography for in vivo mouse retinal imaging.

Jian Y, Zawadzki RJ, Sarunic MV.

J Biomed Opt. 2013 May;18(5):56007. doi: 10.1117/1.JBO.18.5.056007.

19.

Multimodal retinal vessel segmentation from spectral-domain optical coherence tomography and fundus photography.

Hu Z, Niemeijer M, Abràmoff MD, Garvin MK.

IEEE Trans Med Imaging. 2012 Oct;31(10):1900-11. doi: 10.1109/TMI.2012.2206822. Epub 2012 Jun 29.

20.

Automated segmentation of intramacular layers in Fourier domain optical coherence tomography structural images from normal subjects.

Zhang X, Yousefi S, An L, Wang RK.

J Biomed Opt. 2012 Apr;17(4):046011. doi: 10.1117/1.JBO.17.4.046011.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk