Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 111

Similar articles for PubMed (Select 18414677)

1.

Methylphenidate decreased the amount of glucose needed by the brain to perform a cognitive task.

Volkow ND, Fowler JS, Wang GJ, Telang F, Logan J, Wong C, Ma J, Pradhan K, Benveniste H, Swanson JM.

PLoS One. 2008 Apr 16;3(4):e2017. doi: 10.1371/journal.pone.0002017.

2.

Smart Drugs and Synthetic Androgens for Cognitive and Physical Enhancement: Revolving Doors of Cosmetic Neurology.

Frati P, Kyriakou C, Del Rio A, Marinelli E, Vergallo GM, Zaami S, Busardò FP.

Curr Neuropharmacol. 2015 Jan;13(1):5-11. doi: 10.2174/1570159X13666141210221750.

3.

In a sweet mood? Effects of experimental modulation of blood glucose levels on mood-induction during fMRI.

Kohn N, Toygar T, Weidenfeld C, Berthold-Losleben M, Chechko N, Orfanos S, Vocke S, Durst A, Laoutidis ZG, Karges W, Schneider F, Habel U.

Neuroimage. 2015 Jun;113:246-56. doi: 10.1016/j.neuroimage.2015.03.024. Epub 2015 Mar 18.

PMID:
25795339
4.

Screening and personalizing nootropic drugs and cognitive modulator regimens in silico.

Jellen LC, Aliper A, Buzdin A, Zhavoronkov A.

Front Syst Neurosci. 2015 Feb 6;9:4. doi: 10.3389/fnsys.2015.00004. eCollection 2015.

5.

Alcohol decreases baseline brain glucose metabolism more in heavy drinkers than controls but has no effect on stimulation-induced metabolic increases.

Volkow ND, Wang GJ, Shokri Kojori E, Fowler JS, Benveniste H, Tomasi D.

J Neurosci. 2015 Feb 18;35(7):3248-55. doi: 10.1523/JNEUROSCI.4877-14.2015.

PMID:
25698759
6.

Performance enhancement at the cost of potential brain plasticity: neural ramifications of nootropic drugs in the healthy developing brain.

Urban KR, Gao WJ.

Front Syst Neurosci. 2014 May 13;8:38. doi: 10.3389/fnsys.2014.00038. eCollection 2014. Review.

7.

Methylphenidate blocks effort-induced depletion of regulatory control in healthy volunteers.

Sripada C, Kessler D, Jonides J.

Psychol Sci. 2014 Jun;25(6):1227-34. doi: 10.1177/0956797614526415. Epub 2014 Apr 22.

8.

The implications of methylphenidate use by healthy medical students and doctors in South Africa.

Beyer C, Staunton C, Moodley K.

BMC Med Ethics. 2014 Mar 4;15:20. doi: 10.1186/1472-6939-15-20. Review.

9.

Methylphenidate and brain activity in a reward/conflict paradigm: role of the insula in task performance.

Ivanov I, Liu X, Clerkin S, Schulz K, Fan J, Friston K, London ED, Schwartz J, Newcorn JH.

Eur Neuropsychopharmacol. 2014 Jun;24(6):897-906. doi: 10.1016/j.euroneuro.2014.01.017. Epub 2014 Jan 18.

PMID:
24491951
10.

Psychostimulants and cognition: a continuum of behavioral and cognitive activation.

Wood S, Sage JR, Shuman T, Anagnostaras SG.

Pharmacol Rev. 2013 Dec 16;66(1):193-221. doi: 10.1124/pr.112.007054. Print 2014. Review.

11.

The effects of methylphenidate on cerebral activations to salient stimuli in healthy adults.

Farr OM, Hu S, Matuskey D, Zhang S, Abdelghany O, Li CS.

Exp Clin Psychopharmacol. 2014 Apr;22(2):154-65. doi: 10.1037/a0034465. Epub 2013 Nov 4.

12.

A liberal consequentialist approach to regulation of cognitive enhancers.

Savulescu J.

Am J Bioeth. 2013;13(7):53-5. doi: 10.1080/15265161.2013.796220. No abstract available.

PMID:
23767445
13.

Toward a theory of childhood learning disorders, hyperactivity, and aggression.

Mawson AR.

ISRN Psychiatry. 2012 Sep 27;2012:589792. doi: 10.5402/2012/589792. Print 2012.

14.

Distributed effects of methylphenidate on the network structure of the resting brain: a connectomic pattern classification analysis.

Sripada CS, Kessler D, Welsh R, Angstadt M, Liberzon I, Phan KL, Scott C.

Neuroimage. 2013 Nov 1;81:213-21. doi: 10.1016/j.neuroimage.2013.05.016. Epub 2013 May 16.

15.

Use of methylphenidate among medical students: a systematic review.

Finger G, Silva ER, Falavigna A.

Rev Assoc Med Bras. 2013 May-Jun;59(3):285-9. doi: 10.1016/j.ramb.2012.10.007. Epub 2013 May 13. Review.

16.

Translating positron emission tomography studies in animals to stimulant addiction: promises and pitfalls.

Caprioli D, Fryer TD, Sawiak SJ, Aigbirhio FI, Dalley JW.

Curr Opin Neurobiol. 2013 Aug;23(4):597-606. doi: 10.1016/j.conb.2013.04.003. Epub 2013 May 9. Review.

PMID:
23664005
17.

Working memory capacity predicts effects of methylphenidate on reversal learning.

van der Schaaf ME, Fallon SJ, Ter Huurne N, Buitelaar J, Cools R.

Neuropsychopharmacology. 2013 Sep;38(10):2011-8. doi: 10.1038/npp.2013.100. Epub 2013 Apr 23.

18.

Strength in cognitive self-regulation.

Barutchu A, Carter O, Hester R, Levy N.

Front Psychol. 2013 Apr 11;4:174. doi: 10.3389/fpsyg.2013.00174. eCollection 2013.

19.

Antipsychotic drug research and resting-state brain activity in normal adults.

Ma YY.

Neurosci Bull. 2013 Feb;29(1):3. doi: 10.1007/s12264-013-1303-5. No abstract available.

PMID:
23322005
20.

The effects of methylphenidate on cognitive function in children with attention-deficit/hyperactivity disorder.

Kubas HA, Backenson EM, Wilcox G, Piercy JC, Hale JB.

Postgrad Med. 2012 Sep;124(5):33-48. doi: 10.3810/pgm.2012.09.2592.

PMID:
23095424
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk