Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 95

Similar articles for PubMed (Select 17928103)

1.

Interaction of antiflammin-1 with uteroglobin-binding protein induces phosphorylation of ERK1/2 in NIH 3T3 cells.

Li C, Han J, Li L, Yue S, Li J, Feng D, Liu H, Jiang D, Qin X, Luo Z.

Peptides. 2007 Nov;28(11):2137-45. Epub 2007 Sep 5.

PMID:
17928103
2.

Uteroglobin binding proteins: regulation of cellular motility and invasion in normal and cancer cells.

Kundu GC, Zhang Z, Mantile-Selvaggi G, Mandal A, Yuan CJ, Mukherjee AB.

Ann N Y Acad Sci. 2000;923:234-48.

PMID:
11193760
3.

Uteroglobin (UG) suppresses extracellular matrix invasion by normal and cancer cells that express the high affinity UG-binding proteins.

Kundu GC, Mandal AK, Zhang Z, Mantile-Selvaggi G, Mukherjee AB.

J Biol Chem. 1998 Aug 28;273(35):22819-24.

4.

A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy.

Lorenz K, Schmitt JP, Schmitteckert EM, Lohse MJ.

Nat Med. 2009 Jan;15(1):75-83. doi: 10.1038/nm.1893. Epub 2008 Dec 7.

PMID:
19060905
5.

Regulation of cell differentiation by hNUDC via a Mpl-dependent mechanism in NIH 3T3 cells.

Zhang YP, Tang YS, Chen XS, Xu P.

Exp Cell Res. 2007 Sep 10;313(15):3210-21. Epub 2007 Jul 6.

PMID:
17658515
6.

Cyclophilin A is required for CXCR4-mediated nuclear export of heterogeneous nuclear ribonucleoprotein A2, activation and nuclear translocation of ERK1/2, and chemotactic cell migration.

Pan H, Luo C, Li R, Qiao A, Zhang L, Mines M, Nyanda AM, Zhang J, Fan GH.

J Biol Chem. 2008 Jan 4;283(1):623-37. Epub 2007 Nov 8.

7.

ERK2-binding domain is required for phosphorylation of EBITEIN1, a potential downstream interactor of ERK2.

Miura K.

Biochem Biophys Res Commun. 2008 Oct 24;375(3):367-71. doi: 10.1016/j.bbrc.2008.08.005. Epub 2008 Aug 26.

PMID:
18700133
8.

Fast regulation of AP-1 activity through interaction of lamin A/C, ERK1/2, and c-Fos at the nuclear envelope.

González JM, Navarro-Puche A, Casar B, Crespo P, Andrés V.

J Cell Biol. 2008 Nov 17;183(4):653-66. doi: 10.1083/jcb.200805049.

9.

Deletion of the ectodomain unleashes the transforming, invasive, and tumorigenic potential of the MET oncogene.

Merlin S, Pietronave S, Locarno D, Valente G, Follenzi A, Prat M.

Cancer Sci. 2009 Apr;100(4):633-8. doi: 10.1111/j.1349-7006.2008.01079.x. Epub 2009 Jan 21.

PMID:
19175607
10.

Osmotic cell shrinkage activates ezrin/radixin/moesin (ERM) proteins: activation mechanisms and physiological implications.

Rasmussen M, Alexander RT, Darborg BV, Møbjerg N, Hoffmann EK, Kapus A, Pedersen SF.

Am J Physiol Cell Physiol. 2008 Jan;294(1):C197-212. Epub 2007 Oct 31.

11.

SH2B1beta enhances fibroblast growth factor 1 (FGF1)-induced neurite outgrowth through MEK-ERK1/2-STAT3-Egr1 pathway.

Lin WF, Chen CJ, Chang YJ, Chen SL, Chiu IM, Chen L.

Cell Signal. 2009 Jul;21(7):1060-72. doi: 10.1016/j.cellsig.2009.02.009. Epub 2009 Feb 26.

PMID:
19249349
12.

Overexpressing PKIB in prostate cancer promotes its aggressiveness by linking between PKA and Akt pathways.

Chung S, Furihata M, Tamura K, Uemura M, Daigo Y, Nasu Y, Miki T, Shuin T, Fujioka T, Nakamura Y, Nakagawa H.

Oncogene. 2009 Aug 13;28(32):2849-59. doi: 10.1038/onc.2009.144. Epub 2009 Jun 1.

PMID:
19483721
13.

The prolyl isomerase Pin1 interacts with a ribosomal protein S6 kinase to enhance insulin-induced AP-1 activity and cellular transformation.

Lee NY, Choi HK, Shim JH, Kang KW, Dong Z, Choi HS.

Carcinogenesis. 2009 Apr;30(4):671-81. doi: 10.1093/carcin/bgp027. Epub 2009 Jan 23.

14.

Flow cytometry-based binding assay for GPR40 (FFAR1; free fatty acid receptor 1).

Hara T, Hirasawa A, Sun Q, Koshimizu TA, Itsubo C, Sadakane K, Awaji T, Tsujimoto G.

Mol Pharmacol. 2009 Jan;75(1):85-91. doi: 10.1124/mol.108.052225. Epub 2008 Oct 16.

15.

Angiotensin-(1-7) enhances angiotensin II induced phosphorylation of ERK1/2 in mouse bone marrow-derived dendritic cells.

Nie W, Yan H, Li S, Zhang Y, Yu F, Zhu W, Fan F, Zhu J.

Mol Immunol. 2009 Jan;46(3):355-61. doi: 10.1016/j.molimm.2008.10.022. Epub 2008 Nov 28.

PMID:
19041135
16.

Regulation of ERK1/2 phosphorylation by acute and chronic morphine - implications for the role of cAMP-responsive element binding factor (CREB)-dependent and Ets-like protein-1 (Elk-1)-dependent transcription; small interfering RNA-based strategy.

Ligeza A, Wawrzczak-Bargiela A, Kaminska D, Korostynski M, Przewlocki R.

FEBS J. 2008 Aug;275(15):3836-49. doi: 10.1111/j.1742-4658.2008.06531.x. Epub 2008 Jul 4.

PMID:
18616461
17.

C-terminal hemocyanin from hemocytes of Penaeus vannamei interacts with ERK1/2 and undergoes serine phosphorylation.

Havanapan PO, Kanlaya R, Bourchookarn A, Krittanai C, Thongboonkerd V.

J Proteome Res. 2009 May;8(5):2476-83. doi: 10.1021/pr801067e.

PMID:
19284748
18.

Mitogen-activated protein kinase ERK1/2 regulates the class II transactivator.

Voong LN, Slater AR, Kratovac S, Cressman DE.

J Biol Chem. 2008 Apr 4;283(14):9031-9. doi: 10.1074/jbc.M706487200. Epub 2008 Feb 1.

19.

Interaction of uteroglobin with lipocalin-1 receptor suppresses cancer cell motility and invasion.

Zhang Z, Kim SJ, Chowdhury B, Wang J, Lee YC, Tsai PC, Choi M, Mukherjee AB.

Gene. 2006 Mar 15;369:66-71. Epub 2006 Jan 19.

PMID:
16423471
20.

GAP1(IP4BP)/RASA3 mediates Galphai-induced inhibition of mitogen-activated protein kinase.

Nafisi H, Banihashemi B, Daigle M, Albert PR.

J Biol Chem. 2008 Dec 19;283(51):35908-17. doi: 10.1074/jbc.M803622200. Epub 2008 Oct 24.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk