Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 261

Similar articles for PubMed (Select 17786505)

1.

Quantifying expression of a dissimilatory (bi)sulfite reductase gene in petroleum-contaminated marine harbor sediments.

Chin KJ, Sharma ML, Russell LA, O'Neill KR, Lovley DR.

Microb Ecol. 2008 Apr;55(3):489-99. Epub 2007 Sep 5.

PMID:
17786505
2.

Quantification of Desulfovibrio vulgaris dissimilatory sulfite reductase gene expression during electron donor- and electron acceptor-limited growth.

Villanueva L, Haveman SA, Summers ZM, Lovley DR.

Appl Environ Microbiol. 2008 Sep;74(18):5850-3. doi: 10.1128/AEM.00399-08. Epub 2008 Jul 25.

3.
4.

Anaerobic, sulfate-dependent degradation of polycyclic aromatic hydrocarbons in petroleum-contaminated harbor sediment.

Rothermich MM, Hayes LA, Lovley DR.

Environ Sci Technol. 2002 Nov 15;36(22):4811-7.

PMID:
12487304
5.

Molecular analysis of the metabolic rates of discrete subsurface populations of sulfate reducers.

Miletto M, Williams KH, N'Guessan AL, Lovley DR.

Appl Environ Microbiol. 2011 Sep;77(18):6502-9. doi: 10.1128/AEM.00576-11. Epub 2011 Jul 15.

6.

Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology.

Geets J, Vanbroekhoven K, Borremans B, Vangronsveld J, Diels L, van der Lelie D.

Environ Sci Pollut Res Int. 2006 Oct;13(6):362-78.

PMID:
17120826
7.

A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries.

Webster G, Watt LC, Rinna J, Fry JC, Evershed RP, Parkes RJ, Weightman AJ.

Environ Microbiol. 2006 Sep;8(9):1575-89.

PMID:
16913918
8.

Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin.

Dhillon A, Teske A, Dillon J, Stahl DA, Sogin ML.

Appl Environ Microbiol. 2003 May;69(5):2765-72.

9.

Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment.

Thomsen TR, Finster K, Ramsing NB.

Appl Environ Microbiol. 2001 Apr;67(4):1646-56.

10.

Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria.

Musat F, Galushko A, Jacob J, Widdel F, Kube M, Reinhardt R, Wilkes H, Schink B, Rabus R.

Environ Microbiol. 2009 Jan;11(1):209-19. doi: 10.1111/j.1462-2920.2008.01756.x. Epub 2008 Sep 22.

PMID:
18811643
11.

Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer.

Rooney-Varga JN, Anderson RT, Fraga JL, Ringelberg D, Lovley DR.

Appl Environ Microbiol. 1999 Jul;65(7):3056-63.

12.

Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea.

Leloup J, Loy A, Knab NJ, Borowski C, Wagner M, Jørgensen BB.

Environ Microbiol. 2007 Jan;9(1):131-42.

PMID:
17227418
13.

Roseobacter clade bacteria are abundant in coastal sediments and encode a novel combination of sulfur oxidation genes.

Lenk S, Moraru C, Hahnke S, Arnds J, Richter M, Kube M, Reinhardt R, Brinkhoff T, Harder J, Amann R, Mußmann M.

ISME J. 2012 Dec;6(12):2178-87. doi: 10.1038/ismej.2012.66. Epub 2012 Jun 28.

14.

Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis.

Gittel A, Mussmann M, Sass H, Cypionka H, Könneke M.

Environ Microbiol. 2008 Oct;10(10):2645-58. doi: 10.1111/j.1462-2920.2008.01686.x. Epub 2008 Jul 8.

PMID:
18627412
15.

Alkane biodegradation and dynamics of phylogenetic subgroups of sulfate-reducing bacteria in an anoxic coastal marine sediment artificially contaminated with oil.

Miralles G, Grossi V, Acquaviva M, Duran R, Claude Bertrand J, Cuny P.

Chemosphere. 2007 Jul;68(7):1327-34. Epub 2007 Mar 6.

PMID:
17337033
16.

Evidence of the activity of dissimilatory sulfate-reducing prokaryotes in nonsulfidogenic tropical mobile muds.

Madrid VM, Aller RC, Aller JY, Chistoserdov AY.

FEMS Microbiol Ecol. 2006 Aug;57(2):169-81.

17.

Gene Expression Correlates with Process Rates Quantified for Sulfate- and Fe(III)-Reducing Bacteria in U(VI)-Contaminated Sediments.

Akob DM, Lee SH, Sheth M, Küsel K, Watson DB, Palumbo AV, Kostka JE, Chin KJ.

Front Microbiol. 2012 Aug 9;3:280. doi: 10.3389/fmicb.2012.00280. eCollection 2012.

18.

Direct analysis of sulfate reducing bacterial communities in gas hydrate-impacted marine sediments by PCR-DGGE.

Bagwell CE, Formolo M, Ye Q, Yeager CM, Lyons TW, Zhang CL.

J Basic Microbiol. 2009 Sep;49 Suppl 1:S87-92. doi: 10.1002/jobm.200800278.

PMID:
19322839
19.

Evaluation of the sulfate-reducing bacterial population associated with stored swine slurry.

Cook KL, Whitehead TR, Spence C, Cotta MA.

Anaerobe. 2008 Jun;14(3):172-80. doi: 10.1016/j.anaerobe.2008.03.003. Epub 2008 Mar 28.

PMID:
18457964
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk