Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 84

Related Citations for PubMed (Select 17696614)

1.

A screen for suppressors of gross chromosomal rearrangements identifies a conserved role for PLP in preventing DNA lesions.

Kanellis P, Gagliardi M, Banath JP, Szilard RK, Nakada S, Galicia S, Sweeney FD, Cabelof DC, Olive PL, Durocher D.

PLoS Genet. 2007 Aug;3(8):e134.

2.

Suppression of genomic instability by SLX5 and SLX8 in Saccharomyces cerevisiae.

Zhang C, Roberts TM, Yang J, Desai R, Brown GW.

DNA Repair (Amst). 2006 Mar 7;5(3):336-46. Epub 2005 Dec 1.

PMID:
16325482
3.

Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae.

Myung K, Chen C, Kolodner RD.

Nature. 2001 Jun 28;411(6841):1073-6.

PMID:
11429610
4.

Mutator genes for suppression of gross chromosomal rearrangements identified by a genome-wide screening in Saccharomyces cerevisiae.

Smith S, Hwang JY, Banerjee S, Majeed A, Gupta A, Myung K.

Proc Natl Acad Sci U S A. 2004 Jun 15;101(24):9039-44. Epub 2004 Jun 7.

5.

Mitotic checkpoint function in the formation of gross chromosomal rearrangements in Saccharomyces cerevisiae.

Myung K, Smith S, Kolodner RD.

Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):15980-5. Epub 2004 Oct 28.

6.

Induction of genome instability by DNA damage in Saccharomyces cerevisiae.

Myung K, Kolodner RD.

DNA Repair (Amst). 2003 Mar 1;2(3):243-58.

PMID:
12547388
8.
9.

Determination of gross chromosomal rearrangement rates.

Putnam CD, Kolodner RD.

Cold Spring Harb Protoc. 2010 Sep 1;2010(9):pdb.prot5492. doi: 10.1101/pdb.prot5492.

10.

Analysis of gross-chromosomal rearrangements in Saccharomyces cerevisiae.

Schmidt KH, Pennaneach V, Putnam CD, Kolodner RD.

Methods Enzymol. 2006;409:462-76.

PMID:
16793418
11.

Inverted DNA repeats channel repair of distant double-strand breaks into chromatid fusions and chromosomal rearrangements.

VanHulle K, Lemoine FJ, Narayanan V, Downing B, Hull K, McCullough C, Bellinger M, Lobachev K, Petes TD, Malkova A.

Mol Cell Biol. 2007 Apr;27(7):2601-14. Epub 2007 Jan 22.

13.

Sugar and chromosome stability: clastogenic effects of sugars in vitamin B6-deficient cells.

Marzio A, Merigliano C, Gatti M, Vernì F.

PLoS Genet. 2014 Mar 20;10(3):e1004199. doi: 10.1371/journal.pgen.1004199. eCollection 2014 Mar.

15.

Suppression of spontaneous genome rearrangements in yeast DNA helicase mutants.

Schmidt KH, Kolodner RD.

Proc Natl Acad Sci U S A. 2006 Nov 28;103(48):18196-201. Epub 2006 Nov 17.

16.

Spt2p defines a new transcription-dependent gross chromosomal rearrangement pathway.

Sikdar N, Banerjee S, Zhang H, Smith S, Myung K.

PLoS Genet. 2008 Dec;4(12):e1000290. doi: 10.1371/journal.pgen.1000290. Epub 2008 Dec 5.

17.

Maintenance of genome stability in Saccharomyces cerevisiae.

Kolodner RD, Putnam CD, Myung K.

Science. 2002 Jul 26;297(5581):552-7. Review.

PMID:
12142524
18.

Heterozygous screen in Saccharomyces cerevisiae identifies dosage-sensitive genes that affect chromosome stability.

Strome ED, Wu X, Kimmel M, Plon SE.

Genetics. 2008 Mar;178(3):1193-207. doi: 10.1534/genetics.107.084103. Epub 2008 Feb 1.

19.
20.

Multiple regulatory mechanisms to inhibit untimely initiation of DNA replication are important for stable genome maintenance.

Tanaka S, Araki H.

PLoS Genet. 2011 Jun;7(6):e1002136. doi: 10.1371/journal.pgen.1002136. Epub 2011 Jun 16.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk